For many composite systems (such as molecules, atoms and nuclei) the shape evolves with particle number, and the changing shape strongly influences important properties of these systems. For example, spherical quantum systems only have a vibrational collective degree of freedom, while deformed systems can also rotate. In nuclear physics, the low lying collective states are classified and understood in terms of their relationship to the paradigms of harmonic vibrator Hamiltonian based on the shape parameters β and γ.

Except for a scale factor, parameter-free approximate analytical solutions for energies and transition probabilities have been derived for these new symmetries at both of the phase transitional points mentioned above [6,7]. Among the predictions are the energy ratios $E(0^+J_s) / E(2^+J_s)$ and $E(J^+_s) / E(2^+_s)$ as a function of angular momentum J, and $B(E2)$ values for interband and intraband transitions.

Because nuclei are discrete systems, leading to discrete points in the phase diagram, only few nuclei can be expected to be very close to a critical point. For the more recently

![Graph](https://via.placeholder.com/150)

FIG. 1. The ratio of the energy of the states in the yrast band to the energy of the first 2^+ state for 102,104,106Mo. The ratios are compared to predictions of vibrational and rotational limits and of the dynamical symmetry $X(5)$.

For many composite systems (such as molecules, atoms and nuclei) the shape evolves with particle number, and the changing shape strongly influences important properties of these systems. For example, spherical quantum systems only have a vibrational collective degree of freedom, while deformed systems can also rotate. In nuclear physics, the low lying collective states are classified and understood in terms of their relationship to the paradigms of harmonic vibrator Hamiltonian based on the shape parameters β and γ.

Except for a scale factor, parameter-free approximate analytical solutions for energies and transition probabilities have been derived for these new symmetries at both of the phase transitional points mentioned above [6,7]. Among the predictions are the energy ratios $E(0^+J_s) / E(2^+J_s)$ and $E(J^+_s) / E(2^+_s)$ as a function of angular momentum J, and $B(E2)$ values for interband and intraband transitions.

Because nuclei are discrete systems, leading to discrete points in the phase diagram, only few nuclei can be expected to be very close to a critical point. For the more recently

![Graph](https://via.placeholder.com/150)

FIG. 1. The ratio of the energy of the states in the yrast band to the energy of the first 2^+ state for 102,104,106Mo. The ratios are compared to predictions of vibrational and rotational limits and of the dynamical symmetry $X(5)$.
Presented solution to the X(5) symmetry, only two nuclei (152Sm and 150Nd) are known so far to be in good agreement with characteristic predictions of this new critical point symmetry [8,9]. These two and most other candidates for an X(5) symmetry are in the region of rare earth nuclei with \(N = 90 \).

However, two recent publications point out [11,12] that the energy levels of the yrast, the \(K = 2 \), and the \(K = 4 \) bands in \(^{104}\text{Mo}\) [13] are very close to the X(5) predictions. To illustrate this, Fig. 1 shows the energy ratio of yrast \(J^+ \) states and yrast \(2^+ \) state as a function of \(J \) for \(^{102,104,106}\text{Mo}\). \(^{104}\text{Mo}\) not only shows a behavior very close to the X(5) predictions, but there also seems to be a trend from vibrational to rotational behavior, suggesting the possibility of a phase transition. However, it must be mentioned that the rotational limit for heavier Mo isotopes is not reached, which can be seen from the energy ratio \(E(4^+)/E(2^+) \), which is 2.919, 3.044, and 2.925 for \(^{104}\text{Mo}, ^{106}\text{Mo}, \) and \(^{108}\text{Mo}\), respectively. In order to draw a definite conclusion on the agreement between X(5) predictions and real nuclei, it is important to also compare predicted and measured transition matrix elements. In Refs. [11,12] such a comparison was performed for only two \(B(E2) \) values.

The purpose of this paper is to report on transition matrix elements in \(^{104}\text{Mo}\) and \(^{106}\text{Mo}\) obtained by measuring lifetimes of excited states populated in the spontaneous fission of \(^{252}\text{Cf}\) using a coincidence Doppler-shift lifetime technique and the Gammasphere array. Additionally, the results of this paper will be compared with the predicted matrix elements to verify the X(5) predictions.
TABLE I. Lifetimes τ, reduced transition probabilities $B(E2)$, and transition quadrupole moments Q_t for levels in 104,106Mo. For the new lifetimes, first statistical, and then systematic errors are given. $B(E2)$ and Q_t values have been calculated after quadratically adding these errors and taking into account the conversion coefficient α adopted from Ref. [24]. For comparison, earlier results are shown as well.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>$J_i^g \rightarrow J_f^g (h)$</th>
<th>Energy (keV)</th>
<th>τ (ps)</th>
<th>$B(E2)(e^2 \text{ fm}^4)$</th>
<th>Q_t (e fm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>104Mo</td>
<td>$2^+ \rightarrow 0^+$</td>
<td>192</td>
<td></td>
<td>1040 (e)</td>
<td>1396 (112)</td>
</tr>
<tr>
<td></td>
<td>$4^+ \rightarrow 2^+$</td>
<td>369</td>
<td>41.0 (18)</td>
<td>38.7 (50), c 37.7 (11)</td>
<td>2890 (250)</td>
</tr>
<tr>
<td></td>
<td>$6^+ \rightarrow 4^+$</td>
<td>519</td>
<td>6.04 (54)</td>
<td>6.0 (23), d 6.83 (21)</td>
<td>3590 (520)</td>
</tr>
<tr>
<td></td>
<td>$8^+ \rightarrow 6^+$</td>
<td>642</td>
<td>2.84 (60), e 3.19 (16)</td>
<td></td>
<td>2370 (120)</td>
</tr>
<tr>
<td></td>
<td>$10^+ \rightarrow 8^+$</td>
<td>733</td>
<td>1.42 (20)</td>
<td>e 1.56 (10)</td>
<td>2530 (150)</td>
</tr>
<tr>
<td>106Mo</td>
<td>$2^+ \rightarrow 0^+$</td>
<td>172</td>
<td></td>
<td></td>
<td>1803 (44), f</td>
</tr>
<tr>
<td></td>
<td>$4^+ \rightarrow 2^+$</td>
<td>351</td>
<td>36.6 (28)</td>
<td>24.4 (35)</td>
<td>4140 (600)</td>
</tr>
<tr>
<td></td>
<td>$6^+ \rightarrow 4^+$</td>
<td>511</td>
<td>6.1 (11)</td>
<td>3600 (1100)</td>
<td>382 (28)</td>
</tr>
<tr>
<td></td>
<td>$8^+ \rightarrow 6^+$</td>
<td>655</td>
<td>2.55 (49)</td>
<td></td>
<td>2660 (520)</td>
</tr>
<tr>
<td></td>
<td>$10^+ \rightarrow 8^+$</td>
<td>785</td>
<td>1.00 (19)</td>
<td></td>
<td>2750 (530)</td>
</tr>
</tbody>
</table>

aAdopted from Refs. [20, 21].
bAdopted from Ref. [22].
cAdopted from Ref. [23].
dAdopted from Ref. [9].
eAdopted from Ref. [19].
fAdopted from Ref. [21].
gAdopted from Ref. [14].

measurement and previously published data are compared to the X(5) predictions. An analysis of the presently available experimental $B(E2)$ values favors a rotational interpretation for 104Mo rather than an X(5) interpretation.

In the present work the spontaneous fission of 252Cf was used to populate excited states in the final fission fragments, and the recoil distance method (RDM) was employed to gain lifetime information. Neutron-rich Mo isotopes are produced in the fission of 252Cf with high yields, for example, 104Mo and a Ba-isotope partner with more than 3.5% [14]. The experiment was performed by mounting the New Yale Plunger Device (NYPD) [15] and a solar cell array inside the Gammasphere array [16], which comprised 100 Compton-suppressed high volume Ge detectors. A schematic of the experiment can be seen in Fig. 2. A thin $\sim 70 \mu$Ci 252Cf source—decaying by spontaneous fission into (typically) two main fission fragments that travel in opposite directions—was placed on a stretched ~ 1 mg/cm2 Ni foil. One of the excited fission fragments was slowed down in the Ni foil and after traveling a variable distance x was stopped in a stretched 10 mg/cm2 Au stopper foil. The complementary fragment was detected by the photocells within a detection angle of ~ 20 deg to the plunger axis. Events were recorded if at least three suppressed γ rays in the Ge detectors and one particle in the solar cell array were detected in coincidence. The requirement of one particle in the solar cell ensured that the partner fragment traveled towards the stopper within a cone of ± 20 deg. Additionally, the particle spectrum inset of Fig. 2 can be used to distinguish between the lower ($A \sim 100$) and higher ($A \sim 140$) mass fission products.

Approximately 85×10^6 coincidence events were collected at each of 22 source-to-stopper distances between 9 and 7000 μm for approximately one day per distance. The data were stored by using the software package BLUE [17] that stores the data in an energy sorted list-mode database with an independent file for each coincidence multiplicity. From this, ~ 15 Gigabyte database spectra for each distance and for each ring of Gammasphere were produced, gating on the deposited particle energy and on the shifted and unshifted components of γ rays below and above the transition of interest. At least one gate was placed on a Doppler-shifted component of a transition above the level of interest, avoid-

FIG. 5. Comparison of the relative experimental $B(E2)$ values of the yrast transitions in 104Mo from this work (filled squares), Refs. [20, 21, 23] (open diamond), Ref. [9] (open square), Ref. [19] (open triangles), and Ref. [22] (closed triangles) with the predictions for the vibrational and rotational limits, and for the X(5) symmetry. Normalization is done using the combined value of Refs. [20–22] for the $2^+ \rightarrow 0^+$ transition (open circle).
ing systematic errors from incorrect feeding assumptions.

After the particle plus double-γ gate, as well as background subtraction, clean spectra (see Fig. 3) were obtained for the different distances. From the intensities of the shifted and unshifted peaks at different distances, the lifetime can be extracted using the differential decay curve method [18]. If the level of interest is populated by transition B and depopulated by transition A, and $I_{u,B}^A$ are the unshifted (u) and shifted (s) intensities of transitions A and B, respectively, then the lifetime is given by

$$\tau(x) = \frac{I_{u,A}^B(x)}{G(x)} = \frac{\int \left(I_{u,A}^B(x) + I_{s,A}^B(x) \right) d\tau}{\int d\tau I_{s,A}^B(x)}.$$ \hspace{1cm} (1)

Here, v is the velocity projection of the fission fragment on the plunger axis. If the shifted component of the direct feeder transition is used as a gate, then the unshifted component $I_{u,A}^B(x) \neq 0$ for all source-to-stopper distances x and the lifetime can be found only by the intensities of the unshifted peaks and the derivative of the intensities of the shifted peaks, $\tau(x) = \int I_{u,A}^B(x) [v \, dx \, dI_{s,A}^B(x)]$, as shown in Fig. 4.

The derivative of the intensities is evaluated after fitting second-order polynomials through the measured intensities. To gain insight about the possible systematic error by this fitting procedure, different regions have been chosen, and the results have been compared. Due to this evaluation, an overall systematic error of 3% was estimated and included. Additionally, due to the opening angle of ~20 deg of the detected fission fragments, the flight distances were on average 3% longer than the direct distance from Ni foil to stopper, for which the measured lifetimes were corrected.

Lifetimes have been obtained for the 4^+_1 and 6^+_1 levels in 104Mo and 106Mo. The results are summarized in Table I. For comparison, previously measured lifetimes in these nuclei are listed as well.

Both Refs. [11,12] suggest 104Mo to be an X(5) candidate, but only state the lifetimes [or equivalently, B(E2) values] of the 2^+_1 and 4^+_1 states. As the first excited state is used for normalization, effectively only one data point was used in these references, with statistics insufficient to draw conclusions. With the values from Refs. [19,22] together with the newly measured lifetimes, it is apparent that the data favor a rotational rather than an X(5) interpretation for the yrast cascade of 104Mo (see Fig. 5). However, it is also clear that additional lifetimes for the $K=2$ and $K=4$ bands as well as the level sequence built on the first excited 0^+ state would give further insight.

It should be mentioned that the values for the 8^+_1 and the 10^+_1 states from Ref. [19] are not independent, but are calculated from an effective quadrupole moment between 6^+ and 12^+ states under the assumption of a rotational formula being valid. One should also note that it was shown in Ref. [25] that even with very good statistics systematic uncertainties limit the accuracy of RDM experiments to an overall uncertainty of at least 3%. We therefore feel that with the statistics presented, the quoted uncertainties of 3% in Ref. [22] seems to underestimate the real uncertainties. The new values for 4^+_1 and 6^+_1 lifetimes in 104Mo from the present work are in agreement with those from previous measurements and confirm the rotational behavior of the yrast states.

In 106Mo we were for the first time able to measure the lifetime of the 6^+ yrast level. The quadrupole moment for the 4^+ level in 106Mo from this work is significantly lower than the one quoted in Ref. [14], but is consistent with both quadrupole moments for the 2^+ and 6^+ states. The constant quadrupole moment shows the rotational character of the yrast cascade in 106Mo, which also has the same dynamical moment of inertia as the rotational bands built on the one- and two-γ phonon vibrational states reported in Ref. [26].

For both nuclei there appears to be a drop in the quadrupole moments for the 8^+ and 10^+ levels. This has been interpreted in Ref. [19] as an indication for triaxiality at higher rotational frequency.

In conclusion, the lifetimes of the 4^+_1 and 6^+_1 states of 104Mo and 106Mo have been measured with a double-gate recoil distance method, avoiding any systematic error from sidefeeding assumptions. It has been shown that $B(E2)$ values in the yrast bands of 104Mo and 106Mo follow a rotational behavior. This behavior is in contrast to the behavior of the level energies, which is consistent with the X(5) predictions. While we are not able to resolve this contradiction, the analysis presented here stresses on the need to input a large number of spectroscopic observables before drawing conclusions about the structure of transitional nuclei.

We would like to thank Daeg Brenner for valuable discussions about the X(5) symmetry and the nucleus 104Mo. This work was supported by the U.S. Department of Energy under Grants Nos. DE-FG02-91ER-40609 and DE-FG02-88ER-40417, the National Science Foundation, and the German DFG under Contract No. Pi 393/1.

B(E2) VALUES AND THE SEARCH FOR THE . . .

