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a b s t r a c t

We extend the non-Markovian quantum state diffusion (QSD)
equation to open quantum systems which exhibit multi-channel
coupling to a harmonic oscillator reservoir. Open quantum systems
which have multi-channel reservoir coupling are those in which
canonical transformation of reservoir modes cannot reduce the
number of reservoir operators appearing in the interaction
Hamiltonian to one. We show that the non-Markovian QSD
equation for multi-channel reservoir coupling can, in some cases,
lead to an exact master equation which we derive. We then derive
the exact master equation for the three-level system in a vee-type
configuration which hasmulti-channel reservoir coupling and give
the analytical solution. Finally, we examine the evolution of the
three-level vee-type systemwith generalized Ornstein–Uhlenbeck
reservoir correlations numerically.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Master equations have served as an essential tool in the dynamical analyses of open quantum
systems since their introduction in a quantum mechanical setting by Pauli in 1928 [1]. At their core,
master equations simplify the complexity inherent in the dynamics of a large reservoir by recording
only the influence of the reservoir on the evolution of the system. Master equations also have the
attractive feature that their solution automatically makes the evolution of any system observable. In
contrast, while the Heisenberg picture approachmay often be less complicated, the results are usually
applicable to only one or two Heisenberg operators [2]. When the coupling to the reservoir is weak
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and when the correlation times of the reservoir are negligible compared to the evolution time of the
system, the coupling may be said to be Markovian, and the so-called Lindblad master equation may
be used to approximate the system evolution [3,4]. In cases where the coupling to the reservoir is
non-Markovian, alternative techniques must be used to determine the system dynamics.

Methods for determining the dynamics of an open quantum systemwith non-Markovian coupling
to a reservoir include the quantum trajectory approach. Quantum trajectory methods use a stochastic
Schrödinger equation to evolve pure system states subject to a stochastic process. The evolution of the
system density operator is given by themean of the solution to the stochastic equation. The average of
repeated numerical implementations of the stochastic evolution equation can be used to determine
the evolution of the system when a formal solution to the stochastic equation cannot be found.

A primary example of a quantum trajectories approach is the non-Markovian quantum state
diffusion (QSD) equation. First introduced by Diósi and Strunz [5], the non-Markovian quantum
state diffusion equation is a generalization of the Markovian QSD equation [6–8]. In contrast to the
Markovian QSD equation which uses a white noise process in the stochastic evolution equation,
the non-Markovian QSD equation is built around a colored noise process. The non-Markovian QSD
equation has been used to examine a wide variety of non-Markovian open quantum systems,
including the spin-N system, the N-cavity model, the N-qubit model, and many others [9–16]. The
non-Markovian QSD equation has also been used as an analytical tool, since, in some cases, the
non-Markovian QSD equation can be used to derive an exact master equation. For instance, the
exact master equation for quantum Brownian motion [17–19] has also been derived using the non-
Markovian QSD equation [13]. The non-Markovian quantum state diffusion equation is exact and
applies to openquantumsystems inwhich, (a) the initial state of the total system is factorizable into an
initial system state and a thermal reservoir state, and (b) the system couples to the reservoir through
a single channel.

Single-channel reservoir coupling occurs when the reservoir operators entering into the
interaction Hamiltonian are mutually proportional. Consider, for example, the following interaction
Hamiltonian,

Hint =


m


Lm ⊗ BĎm + h.c.


, (1)

where Lm are operators of the system, Bm =


k gmkak are the reservoir operators expressed in terms
of ak, the annihilation operators for mode k of a boson reservoir, and gmk is the coupling constant
between system operator Lm and reservoir mode k. If Bm = κmB for allm, then the reservoir operators
are mutually proportional and the interaction Hamiltonian may be reduced to interactions between
a single reservoir operator, B, and an effective system operator Leff =


m κ

∗
mLm,

Hint = Leff ⊗ BĎ + h.c. (2)

In the context of open quantum systems where the system consists of multiple particles which are
coupled to a common reservoir, interactions of the form of (2) are often described as having collective
decoherence and are an essential part of the theory of decoherence free subspaces [20,21].

The standard non-Markovian quantum state diffusion equation may be used for interaction
Hamiltonians which take the form of (2). Such interactions may be called single-channel reservoir
coupling interactions because a canonical transformation can always bemade to a new set of reservoir
modes

bj =


k

ujkak, (3)

for which b0 = ηB, where η = 1/


k |gk|2. Consequently, we have Hint = (L̃eff ⊗ bĎ0 + h.c.) where
L̃eff = Leff/η. In contrast, multi-channel reservoir coupling occurs when a canonical transformation
of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction
Hamiltonian to one (up to the Hermitian conjugate operation). Alternatively, we may say that the
interaction Hamiltonian exhibits multi-channel reservoir coupling if the reservoir operators are not
mutually proportional.
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Apart from the fundamental interest in solving open quantum systemswith general multi-channel
coupling, there is one system currently under both theoretical and experimental investigation which
can exhibit multi-channel reservoir coupling. Donor-based charge quantum bits in a semiconductor
host have single-channel reservoir coupling only if the Bohr radii of the s-wave orbitals are exactly
equal for all donors [22]. Donor-based charge quantum bits are of particular interest due to their
potential use within a scalable architecture for a quantum computer. Since multi-channel reservoir
coupling can eliminate decoherence free subspaces which have been proposed as a strategy for
avoiding errors in quantum computing [21,23,24], studying decoherence in the presence of multi-
channel reservoir coupling is of particular importance for this system.

In this article we will extend the quantum state diffusion method to multi-channel reservoir
couplings. As is the case for the standard non-Markovian QSD equation, we will show that an exact
master equationmay sometimes be derived from the non-Markovian QSD equation formulti-channel
reservoir coupling. We will then derive the exact master equation and give the analytical solution for
the three-level atom in a vee-type configuration. Finally, we will provide a toy model for the noise
correlations which will be used to examine the way in which multi-channel reservoir coupling can
affect system evolution.

2. Non-Markovian QSD equation for multi-channel reservoir coupling

We first derive the non-Markovian QSD equation associated with the interaction Hamiltonian (1).
We will take an approach similar to the derivation of Strunz and Yu [13], and consider the case where
the reservoir is initially in the vacuum state. A Bogoliubov transformation can be used to transform
the thermal-state case to the vacuum-state case [12]. Adding the system and reservoir Hamiltonians
to (1) we have,

Htot = Hsys + Hint +


k

h̄ωka
Ď
kak. (4)

We go to the interaction picture of the reservoir, and write the Schrödinger equation for the total
system,

ih̄∂t |Ψt⟩ =


Hsys + h̄


mk


g∗

mkLma
Ď
ke

iωkt + gmkLĎmake
−iωkt


|Ψt⟩, (5)

where we use the abbreviation, |Ψt⟩ ≡ |Ψ (t)⟩. We then take the component of the reservoir in the
Bargmann state, ⟨z|Ψt⟩, where |z⟩ ≡ |{zk}⟩ = ⊗k ẑk|VAC⟩ and ẑk = ezka

Ď
k ,

∂tψt = −
i
h̄
Hsysψt +


m


z∗

mtLm − LĎm

 t

0
ds

n

αmn(t, s)
δ

δz∗
ns


ψt . (6)

In (6), we have defined z∗
mt ≡ −i


k g

∗

mkz
∗

k e
iωkt ,

αmn(t, s) ≡


k

gmkg∗

nke
−iωk(t−s), (7)

and the unnormalized system state |ψt(z∗)⟩ ≡ ⟨z|Ψt⟩ with shorthand ψt(z∗) = |ψt(z∗)⟩. In ψt(z∗)
and in the following, z∗ (z) is used as shorthand for the vector of complex Bargmann coefficients
{z∗

k } ({zk}). The functional derivative in (6) arises from applying the chain rule to the derivative of the
Bargmann state [5],

⟨z|ak =
∂

∂z∗

k
⟨z| =


ds

n

∂z∗
ns

∂z∗

k

δ

δz∗
ns

⟨z|. (8)

The integration limits in (6) arise from noting that |ψt(z∗)⟩ depends only on z∗
s for 0 ≤ s ≤ t .

As written, (6) is the exact evolution equation for ψt(z∗) and does not require interpretation as
a stochastic equation, i.e. given an initial state of the total system |Ψ0⟩, and a Bargmann state |z⟩,
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(6) simply gives the evolution of the Bargmann component of the total system, |ψt(z∗)⟩. Since the
Bargmann state is an over-complete basis, it can be used to evaluate the trace over the reservoir,
giving the reduced density operator of the system,

ρt =


d2z p(z) ⟨z|Ψt⟩ ⟨Ψt |z⟩ , (9)

where d2z = d2z1d2z2 · · · and

p(z) =


k


e−|zk|2

π


. (10)

The normalizing function p(z) appearing in (9) is of the precise form of a distribution of independent
complex Gaussian random variables. We can therefore consider z to be a multivariate complex
Gaussian random variable, where we define the statistical mean M{·} of a stochastic system operator
Φ(z),

M{Φ(z)} =


d2z p(z)Φ(z). (11)

In this contextwe interpret {z∗
mt} as a set of continuousGaussian randomprocesseswith correlation

functions αmn(t, s) = M{zmtz∗
ns}, already worked out in (7). Since the noise processes all arise from

the same reservoir modes, the cross-correlation of the noise terms given in (7) is non-zero when
m ≠ n (in contrast to the noise terms which arrive in dealing with a thermal bath [12]). Additionally,
we may now interpret (6) as a stochastic evolution equation for |ψt(z∗)⟩, which we now call the
(unnormalized) stochastic state vector. Finally, the evolution of the system is found by taking the
statistical mean of the outer product of the stochastic state vector [13],

ρt = M{|ψt(z∗)⟩⟨ψt(z∗)|}. (12)

As in the standard non-Markovian QSD derivation we consider solutions to (6) which satisfy the
following condition: The functional derivative in the non-Markovian QSD equation may be written in
terms of an operator, commonly called the O-operator, which depends on the Bargmann states,

δψt

δz∗
ms

= Om(t, s, z∗)ψt (13)

where Om(s, s, z∗) = Lm so that (6) is able to reproduce the QSD equation in the Markov limit [6–8].
By defining

Qm(t, z∗) =

 t

0
ds


n

αmn(t, s)On(t, s, z∗)


, (14)

we can write the non-Markovian QSD equation under the ansatz,

ih̄∂tψt = Heff(t, z∗)ψt , (15)

where Heff(t, z∗) is the effective stochastic Hamiltonian,

Heff(t, z∗) = Hsys + ih̄

m


z∗

mtLm − LĎmQm(t, z∗)

. (16)

To be self-consistent, the solution condition specified in (13)must satisfy the following conditions,

∂t
δψt

δz∗
ms

=
δ

δz∗
ms
∂tψt , (17)

giving rise to the consistency equations for the O-operator Om(t, s, z∗),

∂tOm = −
i
h̄


Heff(t, z∗),Om


−


n

LĎn
δ

δz∗
ms

Q n(t, z∗). (18)
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Finally, by making a Girsanov transformation [10,25], we can write the nonlinear non-Markovian
QSD equation, which is more suitable for numerical simulation,

∂tψ̃t = −
i
h̄
Hsysψ̃t +


m


z̃∗

mt∆t(Lm)−∆t

∆t(LĎm)Qm(t, z̃∗)


ψ̃t , (19)

where z̃∗
mt = z∗

mt +


n

 t
0 αmn(t, s)⟨L

Ď
m⟩sds, and where∆t(A) = A−⟨A⟩t and ⟨A⟩t = ⟨ψ̃t |A|ψ̃t⟩ for any

operator A.
Eqs. (15)–(16) and (18)–(19) are the main results of this article. They allow systems with

multi-channel non-Markovian reservoir coupling to be evaluated numerically using finite-difference
methods. Additionally, in some cases, the quantum state diffusion equations allow for more efficient
simulation as compared to master equations in cases where the master equation may also be
derived [9].

When the O-operators are noise-independent, amaster equationmay be derived, as is also the case
for single-channel coupling. Following the treatment of [13] we evaluate the time-derivative of the
density operator in (12) with the help of (15) to arrive at

d
dt
ρt = −

i
h̄
[Hsys, ρt ] +


m


M

Qm(t, z∗)Pt


, LĎm


+ h.c.


, (20)

where Pt = |ψt(z∗)⟩⟨ψt(z∗)| and we have used the Novikov theorem and the operator ansatz (13)
[13,26] to write

M{Ptzmt} = M{Qm(t, z∗)Pt}. (21)

When the O-operators are noise independent, then Qm(t, z∗) = Qm(t) and we can write an exact
master equation,

d
dt
ρt = −

i
h̄
[Hsys, ρt ] +


m


Qm(t)ρt , LĎm


+


Lm, ρtQ

Ď

m(t)

, (22)

which is themulti-channel analog of the exactmaster equation found by Strunz and Yu [13] for single-
channel reservoir couplings.

3. Three-level vee-type system

We now apply the previous results to demonstrate the utility of the QSD approach for open
quantum systems with multi-channel reservoir coupling. We consider the three-level system in a
vee-type configuration with multi-channel reservoir coupling, as shown in Fig. 1(a). We consider the
case where the decoherence is generated by the lowering operators, Lm = |3⟩⟨m|,

Hint = |3⟩⟨1| ⊗ BĎ1 + |3⟩⟨2| ⊗ BĎ2 + h.c., (23)

where the excited levels |1⟩ and |2⟩ are separated from the ground state |3⟩ by energies h̄ω1 and
h̄ω2, respectively, so that Hsys = h̄ω1|1⟩⟨1| + h̄ω2|2⟩⟨2|. We note that in the following, summations
will always be over indices corresponding to the two upper levels, 1 and 2. When we expand the
O-operator as

Oq(t, s, z∗) =


p

fqp(t, s)|3⟩⟨p|, (24)

we find that the consistency equations reduce to

∂t fqp = iωpfqp +


m

fqmFmp, (25)

where fqp(s, s) = δqp, and we have defined

Fmp(t) =

 t

0
ds

n

αmn(t, s)fnp(t, s), (26)



C.J. Broadbent et al. / Annals of Physics 327 (2012) 1962–1973 1967

a b

Fig. 1. (a) Three-level system in vee-type configuration. (b) Multi-level vee-lambda system with 3 upper levels and 4 lower
levels. The lines connecting levels indicate possible transitions.

so that Qm(t, z∗) =


p Fmp(t)Lp. The resulting master equation is given by

dρt
dt

= −
i
h̄
[Hsys, ρt ] +


mp


Fmp(t)[Lpρt , LĎm] + F∗

pm(t)[Lp, ρtL
Ď
m]

. (27)

With only slight adjustments, the O-operator in (24) can be generalized successfully to any system
which can be divided into upper and lower levels with transitions forbidden within the upper and
lower levels, respectively, and in which the decoherence generators are lowering operators between
upper and lower levels [27]. We call such systems multi-level vee-lambda systems since they are a
generalization of both the vee and lambda systems. Fig. 1(b) gives an example of a 7-level vee-lambda
system. The resulting master equation will be of the exact form of (27), albeit with the summation
running over all upper and lower levels.

Though the master equation in (27) appears similar in nature to approximate master equations
(such as the Born–Markov or Lindblad master equations), (27) is exact. The time-dependence present
in the coefficients encapsulates the total effect of the reservoir, and, in particular, any non-Markovian
effects.

For the three-level vee-type system we can find an analytic solution to the master equation. We
first define the operator

F(t) =


m

Fmn(t)|m⟩⟨n|, (28)

which allows us to write

∂tρ = −
i
h̄
[Hsys, ρ] − (Fρ + ρF Ď)+ tr


Fρ + ρF Ď


|3⟩⟨3|. (29)

The solution to (29) with initial condition ρ(0) = ρ0 is given by

ρ(t) = p(t)ρe(t)+


1 − p(t)


|3⟩⟨3| (30a)

where

p(t) = tr

O

Ď
t Otρ0


, (30b)

ρe(t) =
Otρ0O

Ď
t

tr

O

Ď
t Otρ0

 , (30c)

and

Ot = exp

−

i
h̄
Hsyst −

 t

0
ds F(s)


. (30d)

Eq. (30) gives the general solution of a vee-type three-level system coupled to a vacuum harmonic
oscillator reservoir under the rotating wave approximation. General properties of vee-type systems
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can be deduced from the form of (30). Since Hsys and F(t) have support in only the system subspace
defined by the excited states, He = Span[{|1⟩, |2⟩}], if the system initial state is excited, ρ0 ∈ He,
then ρe(t) is also an excited state, ρe(t) ∈ He. Additionally, if the initial state is pure, ρ0 = |ψ0⟩⟨ψ0|,
then ρe(t) = |ψt⟩⟨ψt | is also pure, where |ψt⟩ ∝ Ot |ψ0⟩. Consequently, we can interpret the solution
as follows: at time t an initially pure and initially excited state will have either decayed to the ground
state with probability (1 − p(t)) or, with probability p(t), have undergone unitary evolution within
the excited state subspace.

4. Ornstein–Uhlenbeck correlations

We now consider a toy model for the noise correlations which will allow us to examine the effect
that non-Markovian and/or multi-channel reservoir coupling has on the system dynamics. The noise
model we will investigate is the generalized Ornstein–Uhlenbeck (OU) correlation function,

αmn(τ ) =
κ∗
mκnγmγn

γm + γn + i(Ωm −Ωn)


e−(γm+iΩm)τ θ(τ )+ e(γn−iΩn)τ θ(−τ)


, (31)

where τ = t − s, and θ(t) is the Heaviside function. The generalized OU correlation function
reproduces the standard OU correlation function when n = m,

αmm(τ ) = |κm|
2 γm

2
e−γm|τ |e−iΩmτ . (32)

We define Γm = |κm|
2 since it corresponds to the decay rate in the standard OU correlation function.

Ωm is the central frequency of the OU correlation function. We also see that 1/γm is the correlation
time of Bm; as γm → ∞ the standard OU correlation function goes to a delta function αmm(τ ) →

Γmδ(τ ). For this reason a finite value of γm signals the departure from theMarkov limit of the reservoir
coupling to levelm.

The parameters in (31) can also be described in terms of a quasi-Lorentzianmodel for the coupling
coefficient,

gm(ω) =
κm

√
2πn′(ω)

γm

γm + i(ω −Ωm)
, (33)

where n′(ω) is the spectral density of reservoir modes, κm is a coupling strength (with units of
√
Hz),

and γm,Ωm (where γm,Ωm > 0 and have units of Hz) are the bandwidth and central frequency of
the reservoir coupling. By letting the summation over k in (7) go to an integral over all frequencies
(positive and negative), the Lorentzian coupling coefficient (33) reproduces the noise correlations
in (31). In the following we will describe the parameters of the OU correlations in terms of their
properties in the coupling coefficients.

Using the generalized OU correlation function, the evolution of the time dependent operator F(s)
in (30) is given by

∂tFmn = αmn(0)− (γm + i(Ωm − ωn))Fmn +


p

FmpFpn. (34)

This set of coupled non-linear first order equations can be solved numerically for particular choices
of the six parameters in the correlation function {κm, γm,Ωm} and the two atomic energies {ωm}. The
solution can then be combined with the analytical solution in (30) to give the complete dynamics of
the atomic density operator.

5. Single-channel reservoir coupling

We now investigate some choices for the coupling parameters to show how multi-channel
reservoir coupling manifests itself in this system. To do this we first examine the reduction of the
consistency equation to the single-channel coupling case, Bm = κmB, which implies that γm = γ and
Ωm = Ω . If, in addition, we consider the case where levels 1 and 2 are degenerate, ωm = ω0, then
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we can derive the evolution of the coefficients Fmn(t) analytically. By defining ∆ = (ω0 − Ω), β =

−(γ − i∆)/2, and η2 = κ2γ /2 − β2 (where κ2
= |κ1|

2
+ |κ2|

2
= Γ1 + Γ2), it can be shown that

Fmn(t) =
κ∗
mκn

κ2
Q (t), (35)

where Q (t) satisfies the differential equation

∂tQ = (Q + β)2 + η2, (36)

with solution

Q (t) = κ2 γ

2


sin ηt

η cos ηt − β sin ηt


, (37)

under the initial condition Q (0) = 0.
Q (t) governs the decoherence behavior for many qualitatively different parameter regimes. For

some of these regimes, Q (t) exhibits complex infinities similar to those described by Diósi et al. [9].
These infinities pose no difficulty to the evolution of the quantum system as discussed by Strunz et al.
[11]. That conclusion is confirmed here since

exp

−

 t

0
ds Q (s)


=

eβt

η
(η cos ηt − β sin ηt), (38)

so that infinities in Q (t) correspond to zeros in the evolution of ρt .
If we define the state

|φ+
⟩ =

1
κ


m

κm|m⟩, (39)

we find that we can write the master equation as

∂tρt = −
i
h̄
[Hsys, ρt ] + Q (t)


[Leffρt , L

Ď
eff] + [Leff, ρtL

Ď
eff]


, (40)

where Leff = |3⟩⟨φ+
|. Written this way it is easy to see that |φ−

⟩ ∝ κ2|1⟩ − κ1|2⟩ is a trivial
solution to (40). Alternatively, it can be shown that |φ−

⟩ satisfies the conditions of a decoherence free
subspace [20,23,24]. Additionally, since any excited state will eventually decay to a mixture of |φ−⟩

and the ground state, the vacuum reservoir induces coherence between levels 1 and 2, for all values
of γ > 0. This effect was first discovered for the three-level vee-type system by Agarwal [28] in the
Markov limit and is knownas vacuum-induced coherence.1 It should be noted that the three-level vee-
type system under a rotating wave approximation is essentially equivalent to the problem of 2 two-
level atoms sharing a single excitation under a rotating wave and an essential states approximation.
Thus, vacuum-induced coherence in the degenerate three-level vee-type system is directly analogous
to the super- and sub-radiant effects in degenerate two-level atoms first emphasized by Dicke [30].

In the Markov limit, when γ ≫ ω0,Ω, κ
2, we find that

Q (t) ≃
κ2

2
, (41)

so that the master equation in the Markov limit is given by

∂tρt = −
i
h̄
[Hsys, ρt ] +

Γ1 + Γ2

2


[Leffρt , L

Ď
eff] + [Leff, ρtL

Ď
eff]


, (42)

as can be verified using traditional methods [31]. We see in (42) that the decay rate out of |φ+
⟩ is the

sum of the individual decay rates out of levels 1 and 2.

1 In the literature there appear to be two scenarios related to vacuum-induced coherence. The other one includes classical
fields which participate in the effect. See, for instance Ref. [29].
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a b c d

Fig. 2. (a–d) Plot of ρ33 (solid), ρ11 (dashed), ρ22 (dotted), and |ρ12| (dotted–dashed) when Γm = ω0,∆ = ω0/100, and
γm = γ = {0.1, 0.2, 1, 5}ω0 for the initial state ρ(0) = |1⟩⟨1|. In all plots the system state in the long-time limit is given by
ρ11 = ρ22 = |ρ12| = 0.25 and ρ33 = 0.5.

We now consider the case where the decay rates are equal Γm = Γ . Under this condition, the
densitymatrix equations in theMarkov limit (42) are exactly those found by Agarwal [28].We plot the
evolution of the level populations, ρ11, ρ22, ρ33, and the excited state coherence |ρ12| in Fig. 2(a)–(d)
for various choices of the width of the coupling coefficients, γ , for the initial state ρ(0) = |1⟩⟨1|.

We choose the coupling to be very strong, Γ = ω0, so that the decoherence evolution takes place
in a few hundred cycles as opposed to many thousand cycles when Γ ≪ ω0. We also choose the
central frequencies of the coupling coefficients to be nearly resonant with the excited state energy,
∆ = (ω0−Ω) = −ω0/100. As thewidth of the coupling coefficient increases from γ = 0.1ω0 we see
that the highly non-Markovian evolution in Fig. 2(a) is replaced by the Markovian decay in Fig. 2(d)
where γ = 5ω0. We also see that after a long time the total system state evolves to a mixture of |φ−

⟩

and the ground state,

ρt →
1
2
|φ−

⟩⟨φ−
| +

1
2
|3⟩⟨3|, (43)

but that the time required to arrive at the long-time limit depends upon the correlation time, 1/γ , of
the reservoir operator B.

6. Multi-channel coupling with variable widths

We now consider the case where the widths of the correlation functions begin to deviate from one
another, but all other parameters are held fixed. When the widths of the coupling coefficients are not
equal, the reservoir coupling is no longer to a single channel. We investigate the case where the width
of the coupling to level 1 is given by γ1 = 5ω0 and the initial state of the atom is |φ−

⟩ to examine how
multi-channel coupling affects the evolution of the decoherence free state. In Fig. 3(a)–(d) we plot
the level populations ρmm, and the coherence between excited states |ρ12| as the width of the second
coefficient, γ2, decreases from the width of the first coefficient. As already discussed, the initial state
satisfies the conditions of a decoherence free subspace when γ1 = γ2, as shown in Fig. 3(a). As the
width of the second coefficient decreases from the first, the system begins to decay to the ground
state. When the width of the second coupling coefficient becomes very narrow relative to the first,
γ2 = 0.1γ1, the decay of ρ11 roughly reduces to what it would be if the decay from level 2 was
forbidden, Γ2 = 0. Consequently, we see that a common noise source mitigates the decay from level
1, even when a decoherence free subspace is not supported by the interaction.

7. Multi-channel coupling with variable central frequencies

Finally, we investigate the case where the width of the coupling coefficients are equal γm = γ ,
but the central frequencies are allowed to shift. When the central frequencies are not identical, the
reservoir coupling is no longer to a single channel. We examine the case where the central frequency
of the second coupling coefficient, Ω2, decreases from the first which remains near resonance,
Ω1 = 1.01ω0, and plot the results in Fig. 4(a)–(f). Since the shift of the coupling coefficient relative
to the width will be important, we investigate two cases: in Fig. 4(a)–(c) we let γ = ω0 and let
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a b c d

Fig. 3. (a–d) Plot of ρ33 (solid), ρ11 (dashed), ρ22 (dotted), and |ρ12| (dotted–dashed) when Γm = ω0,∆ = ω0/100, γ1 = 5ω0 ,
and γ2 = {5, 2.5, 1, 0.1}ω0 for the initial state ρ(0) = |φ−

⟩⟨φ−
|. In (a), ρ22 = ρ11 = |ρ12| = 0.5 as indicated by the overlap of

the dashed, dotted, and dotted–dashed lines.

a b c

d e f

Fig. 4. (a–f) Plot of ρ33 (solid), ρ11 (dashed), ρ22 (dotted), and |ρ12| (dotted–dashed) when Γ = ω0 , andΩ1 = 1.01ω0 for the
initial state ρ(0) = |φ−

⟩⟨φ−
|. Plots (a–c) in the top row have γ = ω0 whereas plots (d–f) in the bottom row have γ = 0.5ω0 .

The plots in the top (a,d), middle (b,e), and bottom (c,f) rows haveΩ2 = {.67, .33, 0}ω0 , respectively. In all plots, ρ11, ρ22 , and
|ρ12| decay in nearly the same fashion from 0.5 as indicated by the overlap of the dashed, dotted, and dotted–dashed lines.

Ω2 = {0.67, 0.33, 0}ω0, and in Fig. 4(d)–(f), we halve the bandwidth, γ = 0.5ω0 and let the central
frequency have the same values as before,Ω2 = {0.67, 0.33, 0}ω0.

Regardless of thewidth of the reservoir coupling, when central frequencies are the same, the initial
state |φ−

⟩ does not decay, as shown for γ = 5ω0 in Fig. 3(a). As the central frequency of the second
channel deviates from the first, the frequency separation relative to width becomes important. In
Fig. 4(a) the frequency separation |Ω2 − Ω1| is only a third of the width. In contrast, Fig. 4(d) has a
frequency separation which is 2/3 of the width. Consequently, the erosion of the decoherence free
state in Fig. 4(d) is more severe than in Fig. 4(a). This property is also apparent in comparing the rate
of decay in Fig. 4(b) and (e), and (c) and (f).

When the separation of the central frequencies is greater than their width, increasing the
separation does not have a strong additional effect on the system evolution. This can be seen in
Fig. 4(d)–(f); the rate of decay in Fig. 4(e) and (f) remains roughly the same even though the frequency
separation has increased in Fig. 4(f) by the same amount as between Fig. 4(d) and (e).

Figs. 2–4 are also consistent with the result that the decoherence free subspaces are robust. Bacon
et al. [32] showed that perturbations to interactions which support decoherence free subspaces do
not degrade the decoherence free subspace to first order in the perturbation and to first order in time.
To see how this applies to the plots above, we rewrite the interaction Hamiltonian as

Hint = H+

int + H−

int (44)
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where H±

int = (|3⟩⟨φ±
| ⊗ BĎ± + h.c.), and where B± ∝ B1 ± B2. When B1 ≃ B2, then B− ≃ 0, and we

can consider H−

int as a perturbation to H+

int. Consequently, to the degree that B1 ≃ B2 we should expect
similarly reduced decay out of |φ−⟩ which is a decoherence free subspace of H+

int. This is verified in
Figs. 3(b), and 4(a), (b), and (d).

8. Conclusion

Wehave extended the non-Markovian quantum state diffusion equation to open quantum systems
with multi-channel reservoir coupling. Multi-channel reservoir coupling occurs when a canonical
transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the
interaction Hamiltonian to one. Apart from fundamental interest in solving the most general type
of reservoir coupling, open quantum systems which can exhibit multi-channel reservoir coupling
are now under both theoretical and experimental investigation [22]. Additionally, understanding
the effect that multi-channel coupling has on decoherence will likely be important for developing
practical quantum information systems.

For open quantum systems with multi-channel reservoir coupling which admit a noise-free
O-operator,wehavederived the exactmaster equation.We then considerednon-Markovian evolution
in the three-level vee-type system, finding the exact master equation in terms of time-dependent
coefficients. By reformulating the master equation in terms of a time-dependent decay operator, we
found the analytical solution to the general master equation for the three-level vee-type systemwith
multi-channel coupling to a harmonic oscillator reservoir.

Using generalized Ornstein–Uhlenbeck noise we demonstrated how the solution to the master
equation for the three-level vee-type system may be used once the noise correlation function
has been determined. When the correlations are identical (up to a constant), the multi-channel
reservoir coupling reduces to single-channel reservoir coupling, and the coefficient equations (34)
can been solved analytically. In this limit, the decoherence free state corresponding to vacuum-
induced coherence is supported by the interaction. As the spectral widths of the Ornstein–Uhlenbeck
correlations deviate from each other, or as their central frequencies separate, the decoherence free
state decays. When the correlations deviate strongly, in width or in central frequency, the decay
proceeds much more rapidly than when the correlations are nearly the same. This demonstrates the
robustness of decoherence free subspaces for Ornstein–Uhlenbeck noise correlations.
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