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19. Lecture, 4 November 1999

19.1 Noise in detection

Since astronomical objects are so faint, the discussion of astronomical detection begins with
considerations of noise: how quantum fluctuations determine the smallest signal that can be detected.
Random fluctuations are imposed on the output of circuits, electromagnetic radiation, and the detection
mechanism for two main reasons:

1. Quantization (usually the finite charge of the electron), and

2. The uncertainty principle.

We will first consider two aspects of noise for which the finite charge of the electron is responsible: shot
noise (also called photon noise, when applied to photodetectors) and Johnson noise. These concepts will be
useful in all of our discussions of the fundamental limitations to detection.

19.2 Shot noise

Suppose a simple circuit, shown in Figure 19.1, has a very small but steady DC current I running through
it, and that we can measure this current by counting the charge carriers (electrons) as they pass some
point A. Because the electrons can collide with each other and with the charged metal ions in the wire,
they pass point A at completely random intervals. They also have a finite charge, q = − × −1 6022 10 19.

coulombs or − × −4 803 10 10.  esu, so although after counting the electrons for many intervals of length ∆t we
would get an average number N  of

N I t
q

= ∆     , (19.1)

during a period ∆t, the number for any given ∆t would be different; sometimes a few more, sometimes a
few less. Thus we would rather speak about chance: what is the probability that exactly N (no bar) show up
during a time interval ∆t?
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Figure 19.1: current with shot noise.

To answer this question, we first divide the exposure time ∆t up into a very large number n of equal
segments of time. The average number arriving in a segment is N n/ , and if n is very large, N n/ << 1 .
Let’s use that limit. Since we can’t have less than one electron arrive, what this means is that the probability
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that an electron arrives during one given segment is N n/ , where the probability is simply the number of
times something is likely to occur per time it’s tried; if something is sure to happen, its probability is 1. We
also see from this limit that the probability of an electron not arriving during the given segment is
1 − N n/ , since there is a total probability of 1 that an electron will either show up or not show up, and

that the probability of two electrons showing up during the same segment is N n/d i2  – so much rarer
than single-electron arrivals that we will henceforth neglect multiple-electron events. The probability of

the arrival of electrons within N segments is therefore N n
N

/d i , and the probability of no electrons

arriving within the remaining n-N segments is 1 −
−

N n
n N

/d i .

There are many ways in which N electrons can arrive within n time segments: there are n! different
rearrangements of the segments 1, N of which contain electron arrivals. On the other hand electrons are
indistinguishable particles, so any of these arrangements in which electrons arrived in the same set of
segments but in a different order are actually indistinguishable from one another; since there are N!
arrangements of N electrons, the number of different arrangements of the n segments must be reduced by
a factor of N!. Similarly, the n-N segments in which no electrons arrive are indistinguishable, and the
number of different arrangements must be reduced further by a factor of (n-N). Thus the number of
different ways in which N electron arrivals can be spread over n time segments is n N n N!/ ! !−a f , the
probability that exactly N electrons arrive during the interval ∆t is
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This probability function is called the binomial distribution; some experience with it will be gained in the
course of Homework Problem 19.1. If it is correct, then the probabilities for each N from zero to n should
add up to 1, so we should check:
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Recall the binomial theorem, Equation 7.9:
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1 Consider the number of choices available in the arrangement of n distinguishable objects of any sort.
There are n possibilities for the first choice, since any can be chosen; n-1 for the second choice, which must
be made among the remaining ones; n-2 for the third choice; and so on, with only one possibility for the
nth choice. The number of different arrangements of the objects is the product of all of the numbers of
possibilities, or n n n n( )( ) ( )(1) !− − =1 2 2 .
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, so that the sum in Equation 19.3 is given by 19.4:
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(It checks out.)

Homework problem 19.1. Noise in a random walk. A friend of yours has just left your party, in a world-
record state of drunkenness. She can't drive home, because you've wisely hidden her car keys, but her
walking suffers from the following restriction: to hold herself up she leans her back against the wall of the
building, so all she can do is stagger along in one dimension. Every lurching step she takes is one meter
long. The directions of her steps are of course completely random; suppose the probability of any given
step being in her right-hand direction is q. You wish to estimate where she's likely to be as a function of
how many steps she's taken.

a. Argue that the probability for her to take N steps to the right out of n total steps is governed by the
binomial distribution, equation 19.5.

b. Derive an expression for her average distance from your door after n total steps.

c. Derive an expression for the rms deviation of her distance from your door, after n total steps.

d. Suppose she is equally likely to step to the left or the right. How far from your door is she likely to be
after 120 steps? (Report this in the form x±∆x.) What is the probability that she'll be falling through
your neighbor's open door, 40 meters to her right of yours, after 120 steps? Hint: remember Stirling's
approximation for the factorial of a large number n:

ln ( !) ln ln( ) .n n n n n≈ − +
1

2
2π

e. Suppose now that the weight of her backpack, slung over her right shoulder, leans her over enough
that she is twice as likely to take a step to the right as to the left. Now how far from your door is she
likely to be after 120 steps? (Report it in the form x±∆x.) What is the probability now that she'll fall
through your neighbor's door on her 120th step (if she hasn't already)?

Let us apply the binomial distribution to the case in which we want the time segments to be infinitesimal
(i.e. n → ∞ ). In Equation 19.2 we can cancel the n N−a f!  in the denominator with the numerator, leaving

N factors in the numerator that can be arranged suggestively with the factor 1 /nN :
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All of the leading terms here become 1 in the limit n → ∞  1 0/n →b g , so we are left with
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To proceed we also need to recall the power-series expansion for the exponential,
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Now operate on the last term in Equation 19.4:
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As before, there are i terms in the numerator of the first term in the sum, and i factors of n in the
denominator:

lim lim ( )
!

( )
!

.

n

n N

n i

i

i
N

i

N
n n n n

N
i

N
i

e

→∞

−

→∞ =

∞

−

=

∞

−
F
HG
I
KJ = −FHG

I
KJ −FHG
I
KJ ⋅ ⋅ ⋅ − −F
HG

I
KJ

−

= − =

∑

∑

1 1 1 1 2 1 1 1

0

0

(19.10)

Thus

p N N
N

e
N

N( )
!

= − (19.11)

is the probability that N electrons will arrive during ∆t, given that the average number arriving during
intervals of equal length is N . This important result is called the Poisson probability distribution. . The
Poisson distribution is plotted as a function of N in Figure 19.2. Note that the “curves” peak near, but not
quite on, the average values; peak and average get closer for larger N ).

We expect, a priori, that the number of electrons lies somewhere between zero and infinity, so the sum of
all the p N( )  from 0 to ∞ should add up to 1, and this turns out to work:
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We also expect that the sum of all the products Np(N) would give N , since the probability p(N) is the
fraction of trials that would give the result N, and this also works:
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where we have made the substitution M = N-1 in the next to last step. In general, any function of N has an
average value given by
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All the statistics of the number of electrons arriving at point A, and any function that depends upon that
number, are completely determined by the probability distribution p(N). Let’s do just one more function,
f N N( ) = 2 :
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where we have substituted M N= − 2  in the penultimate step
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Figure 19.2: Poisson distribution for N = 1  (circles), 4 (xs) and 8 (+s).
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Usually we don’t need the probability distribution function in order to discuss how big the fluctuations
might be - we keep track of it approximately by the mean value and the width of the curve. A standard
measure of the width of the curve is the standard, or root-mean square (rms), deviation from the mean, which
in turn is the square root of the variance, defined by

∆N N N

N NN N

N N

a f d i2 2
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(19.16)

For the Poisson distribution, N N N2 2= + , as we showed above, so
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So, we could say that the number of electrons arriving at point A during ∆t, averaged over a large number

of exposures ∆t long, is N N± , which expresses the fact that the answer is in general different in

different trials , but most of the time the number of arrivals is within ± N  of N .

Now back to our noisy current: the average current I I=  is just qN t/∆ , but we can now characterize the
fluctuations in the current about its mean value obtained in successive trials as a noise current, IN :
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where we have used Equation 19.16 in the next to last step. The important things to notice about this
result, first derived by Schottky in 1916, are that the rms fluctuations of current are proportional to the square
root of current, and that the rms fluctuations decrease proportionally as the square root of the exposure time
increases. The implication of the latter is obvious. Suppose there is a certain shot-noise-dominated current,
for which it is desired to decrease the rms fluctuations by a factor of two, say, in order to look for a small
signal current. One can do so by increasing the exposure time of the measurements of current by a factor
of four.

19.3 Exposure time and bandwidth

In the literature, Equation 19.18 is expressed more often in terms of a frequency bandwidth associated
with the exposure time ∆t , than in terms of this time itself. To derive the bandwidth ∆f  which
corresponds to ∆t , we first note that the current measured as a function of time, by an observer watching
point A in the circuit of Figure 19.1, can be written as a Fourier integral:

I t a e di ta f a f=
−∞

∞z1
2π

ω ωω    , (19.19)
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where ω π= 2 f  is the angular frequency. The Fourier components a ωa f  can be determined by performing

the inverse transform. Suppose that an exposure of length ∆t  has resulted in a value I  for the average
current. The Fourier components that would give a constant current I  over the exposure time are
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We can use Rayleigh’s theorem, Equation 12.17 (reduced to one dimension, that is) to write
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The integral in this expression can be evaluated (giving a trivial result), but instead of doing so we note
that it is evident here that the angular frequency bandwidth corresponding to the exposure time is given
by
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where the factor of two on the left makes up for the integration over negative frequencies as well as
positive ones. This can be put into Equation 19.21, and the common factors cancelled therein, to yield
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With this, the shot noise formula, Equation 19.18, becomes

I I qI fN
2 2 2= =∆ ∆a f , (19.24)

or, in terms of the rms noise current,

I qI fN = 2 ∆ . (19.25)

The form of the results, Equations 19.18, 19.24-25, is due to Poissonian statistics, which in turn implies, as
we assumed in the beginning, that the events (electron arrivals) are distinct and independent. This applies
to a wide range of situations in which we will be interested, but we’ll deal next with a system in which the
arrivals are correlated, and Poissonian statistics do not apply.
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