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Abstract 
 

 This paper is a continuation of a study by Douglass and Clader. We extend the analysis 

through December 2003 using the latest updates of the observational temperature and solar 

irradiance data sets in addition to a new volcano proxy data set.   We have re-determined the 

solar effect on the temperature from satellite measurements of the solar irradiance and the 

temperature of the lower troposphere the sensitivity to solar irradiance. This re-analysis 

calculates two newly recognized dynamic and non-radiative flux factors which must be applied 

to the observed sensitivity. The sensitivity is about twice that expected from a no-feedback 

Stefan-Boltzmann radiation balance model, which implies positive feedback.  The sensitivity to 

volcano forcing is also determined. Preliminary results indicate that negative feedback is present 

in this case.  Response times of fractions of a year are found for both solar and volcano forcing. 

We note that climate models generally assume relaxation times of 5 to 10 years and we comment 

on the consequences of this large disparity.  We also have determined a linear trend in the data.  

  
Abbreviations:  AOD Aerosol optical depth 
 MSU Microwave Sounding Unit 
   SST  Sea surface temperature 
 TLT Name of MSU lower tropospheric data set 
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1.  Introduction 
 

 The importance of solar irradiance I and its influence on the climate of Earth has been 

discussed by Lean and Rind [1], White et al. [2], Baliunas and Soon [3], Reid [4], Crowley [5], 

and others.  In particular, these authors recognized that the question of the sensitivity of the 

global-average surface temperature response of the Earth to changes in the Sun’s irradiance was 

one of the key questions in the study of climate variability.  Two of the present authors [6] 

determined the solar effect on Earth’s temperature from satellite measurements.  This paper 

updates their work on the basis of new observational and theoretical information.  

 The effect of changes in solar I  on Earth’s surface temperature T is smaller and can be 

estimated  from simple radiative equilibrium models without feedback as ∆T/T = ∆I/4I.   We take 

the average I as the solar constant 1365 W/m2 and the average T as 288 K [7].  For a change ∆I ~ 

1 W/m2 [comparable to estimates of the amplitude of the ‘11 year’ sunspot period], one therefore 

estimates ∆T ~ 0.05 K.  Our measurements yield a value of about 0.10 K. This value, however, is 

not negligible compared to some estimates of anthropogenic effects, which are usually measured 

in hundreds of mK per decade.  The framework for a quantitative discussion is developed below. 

 Models of Earth’s climate system generally assume that there is a forcing ∆F (volcano, 

solar, CO2, etc.) that causes a change ∆T in the mean temperature of Earth’s surface.  In 

equilibrium, the relation between these is 

 ∆Τ = λ∆Φ, (1) 

where λ is the climate sensitivity and where ∆F is defined as an equivalent change of non-

reflected solar flux averaged over Earth and referred to the “top of the atmosphere.”  The goal of 

most investigations is to determine the values of ∆F and λ for the particular climate process 
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under consideration.  We report the determination of the observed value for solar forcing by the 

following method.  Using multiple regression (next Section) we determine the irradiance 

constant k defined by 

 ∆T = k∆I. (2) 

The forcing ∆F due to ∆I is given by  

 ∆F = [(1 − α)/4] ∆Ι, (3)  

which is obtained by averaging ∆I over the whole surface of the earth and allowing for a fraction 

(albedo α) to be reflected away.  The climate sensitivity λ is thus given by 

 λ = [4/(1 − α)] k. (4)  

 

2. Data and analysis  
 

 We use the MSU TLT lower troposphere temperature anomaly data [8].  

Since 1979, satellite measurements of I showing three solar activity cycles are available 

(Fröhlich and Lean [9] and updates) as well as lower troposphere  measurements of T anomalies 

(Christy et al. [8] and updates).  From these two data sets we determine k.  We determine the 

effect of other various geophysical phenomena by multiple regression analysis on the MSU data 

where a predictor C for T is assumed to be of the form 

       C = k1S + k2V + k3I + k4L + b . (5) 

We choose four predictor variables, namely El Niño, Volcano effects, Solar irradiance, and an 

arbitrary linear term: 
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 1.  S:  El Niño effects are modeled using the sea surface data SST from region 3.4 [10]. A 

lag time of 6 months gives the highest correlation.  

 2.  V:  Volcano effects are modeled with the atmospheric optical density (AOD) [11].  

We find a lag of 3 months. 

 3.  I :  Solar irradiance data of Fröhlich and Lean [9] and Fröhlich [12] are used. A lag of  

3 months is found. 

 4.  L:  represents a linear term, and a constant b, to be discussed below. 

 

 Figure 1(a) shows the Solar irradiance I, in which one clearly sees solar activity cycles 

21, 22 and 23. Because the solar effect I is weaker by a factor of 10 than that of S and V, we first 

do a regression analysis on T with only S, V, and L.  The resulting residuals are shown also in 

Figure 1(a) where a signal similar to the solar signal can be clearly seen.  The autocorrelation 

functions are shown in Figure 1(b).  The autocorrelation of the solar irradiance shows the 

expected cosine behavior and at a period of 10.1 years, which is the present value for the sunspot 

cycle. The autocorrelation of the T residuals and the cross correlation both show the same period.  

 Figure 2 shows the results of the full regression analysis. The T data and the predictor C 

are shown in the top plot. The contribution of each predictor variable is shown below.  S and V 

are plotted together with S translated by 6 months and V by 3 months. The I and L plots and the 

residuals are shown lower in the figure.  It is especially noted that no averaging was done before 

the regression analysis. The numerical results of the regression analysis and other associated 

quantities are shown in Table 1, where the first row gives the values of the coefficients and their 

standard error.  The fraction of the total variance accounted for by the predictor variables is 

given by the coefficient R2 which we determine to be 0.91.   
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3.  Results and discussion 

 

3.1. Collinearity 

 Santer et al. [13] have questioned the validity of regression analysis on the satellite data 

because large El Niño events occurred at the same time as the two volcanos which resulted in a 

correlation of the order of 0.4 to 0.5. They claim that such ‘high’ correlations indicate 

collinearity that can adversely affect any regression analyses such as reported here. This 

assertion of volcano effect on the regression coefficient is refuted by truncation experiments [6] 

where the coefficients were essentially unchanged by removing the Mt. Pinatubo volcano in the 

first truncation and El Chichón in the second.   In addition, Belsley [14] has devised statistical 

tests to determine the presence of degrading or harmful collinearity among regression variables.  

Douglass et al. [15] have used these tests on this data to show that the regression coefficients 

used here have neither degrading nor harmful collinearity.  

 

3.2. Solar Sensitivity 

 The sensitivity coefficient k for solar irradiance is in fact the regression coefficient k3 

found above: 

 . (6)     k = 0.10 ± 0.02  K/(W/m2 )

This is the only determination of this sensitivity parameter based upon a globally complete 

tropospheric temperature data set.  This measurement is for decadal time scales.  We now 

calculate the value of λ using Eq. (3) and the generally accepted value of the albedo α = 0.30 [7]: 

 . (7)   λ = 0.63± 0.13  K/(W/m2 )
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In standard climatology theory [16], λ depends on an intrinsic λ0 and a gain g.  The gain g arises 

from processes with feedback f: 

 
    
λ = gλ0;     g =

1
1− f

. (8a,b) 

Rind and Lacis [17] estimate the intrinsic sensitivity as λ0 = 0.30 K/(W/m2), which has been 

adopted by the Intergovernmental Panel on Climate Change [18].  We therefore calculate 

 
    
g =

0.63± 0.13
0.30

= 2.1± 0.4;     f = 0.52 
+0.08
−0.12

. (9a,b) 

This value of f is consistent with that from positive water vapor feedback [19] and the delayed 

oscillator process proposed by White et al. [20].   

 

3.3 Trend line in the T data  

 Whether or not T shows a trend is one of the questions currently of interest. This study 

accounts for three of the natural effects [S, V, and I] that obscure the observation of any 

underlying trend line.  The data trend line for the satellite T data is computed and published 

every month [8] and is often quoted as representing the linear trend of the data.  The value of this 

statistic is not a reliable constant [8].  This is because the effect of V is negative and that of S can 

be positive (El Niño) or negative (La Niña).  We show that the solar influence also affects this 

statistic and is negative.  During this time period (1979-2003) there is an underlying decrease in 

the irradiance of the sun which causes a decrease in the trend of –10.6 mK/decade.  We believe 

that the sought-for trend in the data is the coefficient of the linear term from our regression 

analysis.  Its value is +76 ± 10 mK/decade.   
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3.4.  Response time and adjustments of l0. 

 For simplicity, two factors have been omitted from the foregoing discussion of 

sensitivities.  A more precise expression for the sensitivity to solar forcing is 

 
    
λ = λ0 ⋅

1

1+ (ωτ )2
⋅

1
1− γ

⋅ g , (10) 

where the first factor after λ0 is the dynamical factor resulting from the frequency dependence of 

an assumed sinusoidal forcing with angular frequency ω and a system relaxation time τ  (see, e. 

g., [21]).   The next factor is a correction to the standard Stefan-Boltzmann sensitivity resulting 

from non-radiative processes [22].  The last factor is the gain, as discussed earlier. 

 Our measured value for the response time τ of a few months is at variance with tens of 

years estimated in some energy-balance models involving the mixed-layer of the ocean.  For 

example, Wigley and Raper [23] predict that the sunspot cycle signal would be attenuated to 

values of 0.02-0.03K, which is about 30% of what we observe. We suggest that this difference is 

due to their assumption of longer response times.  Douglass et al. [21] in a study of the climate 

response to the annual solar forcing also found response times of the order of months.  With a 

relaxation time of 3 months and a forcing period of 10.1 years, the dynamical factor becomes 

 
    
p =

1

1+ (ωτ )2
=

1

1+ (2π ⋅ 3/121)2
=

1

1+ (0.15)2
= 0.988  (11) 

causing very little reduction. If, on the other hand, the relaxation time were 5 years, p would be 

0.31, a considerable reduction factor.  The assumption of a long relaxation time, which is 

appropriate for deep-ocean processes, appears to have been made in most previous estimates of 

the sensitivity amplitude for 1-to-11 year periodic solar forcing.  Our empirical value suggests 

that this assumption is not appropriate in this case. We note that Wu and North [24] in a study of 
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seven different General Climate Models stated “…[r]elaxation times of about two to eight 

years”. 

 The correction factor 1/(1 – γ) was discovered recently during analysis of the energetics 

of a two-level model climate system [22].  The quantity γ is directly proportional to the non-

radiative (nr) flux from surface to atmosphere and it appears in the intrinsic sensitivity for the 

reason that the system is not entirely governed by Stefan-Boltzmann fluxes.  It is not a feedback. 

Its value is of the order of 0.16 and is not strongly sensitive to model assumptions.  The effect is 

to increase the Stefan-Boltzmann value of λ by 1.19. The final result for λ is   

 
    

λ(theory) = (0.30)(0.989)(1.19)g = 0.35g ,
λ(observed) = 0.63;    g = 0.63/ 0.35 =1.8.

 (12a,b) 

The dynamic factor and the nr-flux factors are seen not to be large corrections in this case. 

However, these two effects must be considered in all climate models and may be quite important 

in other studies. 

 

3.5. Volcanos 

 We determine the volcano regression coefficient k2 to be –2.9 K/µm with a delay of  3 

months.  Hansen et al. [25] have derived the following relationship to obtain the forcing from the 

atmospheric optical density (AOD): 

    ∆F = −A ⋅ AOD , (13)  

where A = 21 W/m2/µm.  It follows that 

     λV = k2 /(−A) = −2.9 /(−21) = 0.14 K/(W/m2 ). (14) 
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In order to estimate the gain from the volcano forcing we need to know the dynamic correction 

factor.  For a periodic signal this factor is given by p (Eq. 11).  The volcano forcing is not a 

periodic function but one could approximate it by ¼  of a sine function of period 12 months. This 

allows an estimate of p ~ 0.6. We estimate the sensitivity to volcano forcing to be 

 
    

λV (theory) = (0.30)(0.6)(1.19)g = 0.21g,
λV (observed) = 0.14;    g = 0.14 / 0.21= 0.67.

 (12a,b) 

This result implies negative feedback f = –0.5 for volcano forcing. This conclusion should be 

considered tentative until a better estimate is available for the dynamical factor p.  

 Many attempts have been made to explain the effects of volcano forcing. The difficulties 

that were encountered were perhaps due to the assumption of long relaxation times.

 

4. Summary 
 

 We find the climate sensitivity to the 11-year variation in solar irradiance to be about 

twice that expected from a no-feedback Stefan-Boltzmann radiation balance model.  This gain of 

a factor of two implies positive feedback.  The analysis of the sensitivity includes a consistent 

determination of the dynamic factor and a newly recognized non-radiative flux factor.  The 

volcano forcing sensitivity is also determined and negative feedback is indicated.  Response 

times of the order of 3 months are found for both solar and volcano forcing.  A linear trend in the 

data having a slope of  76±10 mK/decade is found.  
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Table 1.  Regression Coefficients, Trendlines, and Variances 
 
 TLT TLT 

predictor 
SST AOD 

(volcano)
Solar 

irradiance
Linear 
term 

Constant

Coefficient   k1 k2 k3 104k4 b 
Units   K/K K/µm K/(W/m2) mK/decade K 
Value ± 
Std. error 

  0.129 ± 
0.008 

−2.9 ± 
0.2 

0.103 ± 
0.017 

76.8 ± 10.0 −140 ± 
23 

Variance × 
100 

3.79 2.30 15.0 11.9 1.9 3.2  

Trend 
(mK/decade) 

85.6 85.6 −5.3 24.7 −10.6 76.8 0 

R2 = 1−var(residuals)/var(TLT) = 0.61.  With high frequency noise removed from the residuals 

with an 11-month average R2 = 0.91. 
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Figure captions 
 
 1. (a)  T residual values after S, V, and L are removed and the Solar Irradiance values 

showing very similar features.  (b) Autocorrelation of T and I both showing a period of 
about 10.1 years.     

 
 2. (a) Satellite temperature anomalies. T [t2lt].  (b) t2lt predictor C based upon the predictor 

variables which are:  (c) Sea surface temperature S shifted by 6 months,  (d) Atmosphere 
Optical Depth V shifted by 3 months.  (e) Solar Irradiance I, and (f) Unknown linear 
effect L. After subtraction one is left with the (g) Residuals. 

 
 
 



Fig 1a: Solar Irradiance and t2lt Residuals (Regression with S, V, and L Only)
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Fig 1b: Correlation Functions for Solar Irradiance and t2lt Residuals
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Fig.2: t2lt Data; Predictor; Predictor Variables; and Residuals
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