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Covariance is used as an inner product on a formal vector space built on n random variables to
define measures of correlation Md across a set of vectors in a d-dimensional space. For d = 1, one
has the diameter; for d = 2, one has an area. These concepts are directly applied to correlation
studies in climate science.

1. Introduction

In a study of the earth’s climate system, Douglass [1] considered the correlation among a set
ofN climate indices. A distance d between two indices i and j was defined as

dij(t) = cos−1
(∣∣ϕij(t)

∣∣), (1.1)

where ϕij is the Pearson correlation coefficient. It was stated that d satisfies the conditions to
be a metric. The measure of correlation, or closeness, among the N indices was taken to be
the diameter D

DI0(t) = max
{
dij(t) | i, j ∈ I0

}
. (1.2)

Equation (1.2) was applied to the data from a global set of four climate indices to determine
the correlation among them (minimum in D) and to infer 18 changes in the state since
1970 (see Section 8). It was pointed out that the topological diameter D, as a measure of
phase locking among the indices, is convenient for computation but was probably not the
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best measure. It was suggested that a better measure of correlation among the N indices
could be based upon the area of the spherical triangles created by the N vectors on the unit
sphere.

This paper gives a proof that dij is a metric and generalizes the diameter to higher
dimensions. In addition, the data of [1] are analyzed using this generalization to areas (see
Section 8), and many new abrupt climate changes are identified.

2. Probability

Let X and Y be random variables with expected values E(X) = μ and E(Y ) = ν. With these
values, we make several standard definitions.

Definition 2.1. The variance of X is defined as

Var[X] = E
[(
X − μ

)2]
. (2.1)

Definition 2.2. The covariance of X and Y is defined as

Covar[X,Y ] = E
[(
X − μ

)
(Y − ν)

]
. (2.2)

We now list a few basic properties of variance and covariance (found in [2]).

Properties 2.3

For X and Y as above.

(i) Covar is symmetric.

(ii) Covar is bilinear.

(iii) Var[−] is a quadratic form.

(iv) Covar[X,Y ] = E[XY ] − E[X]E[Y ].

(v) Covar[X,X] = Var[X], the variance of X.

Proof. (i) See [2, page 323]. (ii) Follows easily from the definition. (iii) See [2, page 323]. (iv)
See [2, page 323].

3. Vector Spaces

The first way most students learn to compare two vectors is through the dot product. The dot
product is one example of the more general idea of an inner product. Here we define an inner
product and prove that covariance is an inner product.

Definition 3.1. For any real vector space V , an inner product is a map

〈−,−〉 : V × V −→ R (3.1)
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that satisfies the following properties for every u, v,w ∈ V , and a ∈ R:

(i) 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉

(ii) 〈av,w〉 = a〈v,w〉

(iii) 〈v,w〉 = 〈w,v〉

(iv) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0.

We will now construct a vector space for which covariance is an inner product. Let
{X1, X2, . . . , Xn} be a set of n random variables. Also let V = Span

R
(X1, X2, . . . , Xn), the formal

R-vector space with basis elements {X1, X2, . . . , Xn}. We must put one mild hypothesis upon
V in order for it to have the desired properties. The hypothesis is that the vectors must be
“probabilistically independent.” That is, for any c1, . . . , cn ∈ R, we have that Var[c1X1 + · · · +
cnXn] = 0 if and only if c1 = · · · = cn = 0. It should be noted that this independence is in no
way related to the linear independence of the random variables.

Proposition 3.2. Let V = Span
R
(X1, X2, . . . , Xn), the formal R-vector space generated by the

random variables {X1, X2, . . . , Xn} which are probabilistically independent, then covariance is an
inner product on V .

Proof. We must prove the four properties from Definition 3.1.
(i), (ii), and (iii) follow immediately from Properties 2.3.
(iv) Covar(X,X) = E[(x − μ)2] ≥ 0. The nonnegativity is obvious as we are squaring

a real number. The condition that Covar(X,X) = 0 ⇔ X = 0 follows from the probabilistic
independence of {X1, . . . , Xn}.

The proposition implies that V is an inner product space (a vector space equippedwith
an inner product), and as such it has a norm defined by ‖X‖ =

√
Covar(X,X) = SD(X), where

SD(X) is the standard deviation of X. Additionally it follows from the Cauchy-Schwartz
inequality [3] that |Covar(X,Y )| ≤ SD(X)SD(Y ).

Using the inner product on V , we are able to define an angle between two vectors. To
do this, we first define a new map ρ : (V \ {0})× (V \ {0}) → R using the standard definition
of correlation

ρ(X,Y ) =
Covar(X,Y )
SD(X)SD(Y )

. (3.2)

By the Cauchy-Schwartz inequality, we can easily see that |ρ(X,Y )| ≤ 1, as such we implicitly
define Γ, the angle between X and Y , as follows:

Covar(X,Y ) = SD(X)SD(Y ) cos(Γ). (3.3)

Therefore, ρ(X,Y ) = Covar(X,Y )/SD(X)SD(Y ) = cos(Γ).

Definition 3.3. Γ(X,Y ) = cos−1(ρ(X,Y )) is the “Correlation Angle” of X and Y .
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Our definition of Γ is the standard method of defining an angle from the covariance
(or any other) inner product. We will show that Γ is a “metric” on the unit sphere of V .

Definition 3.4. For any set S, a map d : S×S → R is a metric if for any x, y, z ∈ S the following
properties are satisfied:

(a) d(x, y) ≥ 0 with d(x, y) = 0 ⇔ x = y (positive definite),

(b) d(x, y) = d(y, x) (symmetry),

(c) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Theorem 3.5. The map Γ : V × V → R from Definition 3.3 is a metric on S(V ) = the unit sphere of
V .

Proof. We must prove that Γ satisfies the 3 conditions in Definition 3.4.

(a) cos−1 : [−1, 1] → [0, π] so the nonnegativity is satisfied trivially. It remains to show
that Γ(X,Y ) = 0 ⇔ X = Y . This is true because if the angle between two vectors is
zero, then they are (positive) scalar multiples of each other. Thus since X and Y are
unit vectors, if Γ(X,Y ) = 0, we must have X = Y .

(b) Γ(X,Y ) = cos−1(ρ(X,Y )) = cos−1(Covar(X,Y )/SD(X)SD(Y )) = cos−1(Covar(Y,X)/
SD(Y )SD(X)) = cos−1(ρ(Y,X)) = Γ(Y,X).

(c) To prove the triangle inequality, a geometric idea in itself, we delve into the
geometry being defined. We will complete this part of the proof in Section 4.

Our metric Γ allows us to measure the correlation between two vectors.

Definition 3.6. For X, Y , Γ, and ρ as above:

(i) if Γ = 0 (ρ = 1), then X and Y are maximally positively correlated.

(ii) If Γ = π (ρ = −1), then they are maximally negatively correlated.

(iii) If Γ = π/2 (ρ = 0), then X and Y are uncorrelated.

It should be noted that cases (i) and (ii) are both considered to be “maximally
correlated.”

4. A Geometric Interpretation

The vector space V with inner product Covar lends itself nicely to a geometric interpretation.
First we must establish a small amount of background.

Consider S, the standard unit sphere in Euclidean n-space (Rn). Great circles are
the intersection of a plane through the origin and S. They share many properties with the
standard idea of lines in Euclidean space, including the property that they define the shortest
path between any two points. For a thorough treatment of great circles as lines on a sphere,
see [4–6] or [7].

For any two nonzero vectors v1 and v2 in R
n, let θ be the (minimal) angle formed by

v1 and v2. The unit vectors v̂1 and v̂2, corresponding to v1 and v2, define two points p1 and
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p2 on S. In order to measure the distance from p1 to p2 along S, we take the length of the arc
on great circle between the two points. By definition, this is the radian measure of θ.

If V , the vector space considered in Section 3, is thought of as R
n with v1 and v2 any

two vectors, then we can compute the spherical distance between v1 and v2, namely, the
distance between p1 and p2 on S. We call this quantity Γ

dspherical(v1, v2) = arccos
(
ρ(v̂1, v̂2)

)
= Γ. (4.1)

Thus far we have identified the inner product space (V,Covar) as R
n. We solidify this

intuition with the following proposition. First we define A = (Ai,j) = (Covar(Xi,Xj)), a real
valued symmetric matrix. As in [3], we use A to create the inner product on R

n.

Proposition 4.1. The inner product space 〈Span
R
(X1, . . . , Xn),Covar〉 ∼= 〈Rn, ·A〉, where ·A is a

“twisted dot product” defined for two vectors (c1, . . . , cn) and (d1, . . . , dn) as

(c1, . . . , cn)·A(d1, . . . , dn) := (c1, . . . , cn)A

⎛

⎜⎜⎜
⎝

d1

...

dn

⎞

⎟⎟⎟
⎠

. (4.2)

Proof. This follows from the standard method of representing an inner product by a matrix
(see [3, chapter 8.1]).

Now we return to our proof of Theorem 3.5.

Proof of Theorem 3.5(iii). Let X,Y,Z ∈ V be unit vectors. We have left to show that Γ(X,Y ) +
Γ(Y,Z) ≥ Γ(X,Z).

Because X and Z are unit vectors, Γ(X,Z) is the geodesic distance between X and Z.
Since geodesic distance satisfies the triangle inequality, Γmust as well.

5. Projective Metric

For scientists, ρ = ±1 (equivalently Γ = 0 or Γ = π) are often both considered to be “maximally
correlated,” for example, see [1]. To take this into account, we modify our metric on the unit
sphere of V . We think of V as a projective space, the space of lines through the origin of V .
We denote this space as P(V ).

Our original correlation angle Γ is modified to be

Γ′ = arccos
∣∣ρ(X,Y )

∣∣ =

⎧
⎨

⎩

Γ : 0 ≤ Γ ≤ π

2
π − Γ :

π

2
≤ Γ ≤ π.

(5.1)

Proposition 5.1. Γ′(X,Y ) is a metric on P(Rn).
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Proof. We must show that the three conditions of Definition 3.4 are met.

(i) Γ′ = 0 corresponds to a correlation angle of 0 or π . The two vectors are either in the
same direction or opposite direction. In either case, they determine the same line
through the origin and hence correspond to the same point in projective space.

(ii) As in Definition 3.4, the symmetry of Γ′ follows from the symmetry of ρ.

(iii) As before, the triangle inequality follows as Γ′ is the geodesic distance for a
projective space.

The metric Γ′(X,Y ) gives the angular distance betweenX and Y . If ρ(X,Y ) = ±1 (what
we called a “maximal correlation”) then Γ′ = 0, however, if ρ(X,Y ) = 0, which we called
orthogonality or noncorrelation, then Γ′ = π/2.

Proposition 5.2. Let Γ′ be the metric cos−1(ρ′(X,Y )), then the pair (P(V ),Γ′) is a projective metric
space.

Proof. This is by construction.

6. Time Dependence

Until this point, we have treated our random variables {X1, . . . , Xn} as being time
independent. However, random variables often depend on time. Therefore, we will now
consider each random variable as depending discretely on time. It should be noted that what
follows is essentially a replication of what has come before, however,X and Y are now treated
as vectors instead of singleton points. Vectors, however, are just points of V . The additional
theory and notation is simply a means of dealing with the additional information.

To make our n random variables time dependent, they will now be given as

X1 = {X1(t), X1(t + 1), X1(t + 2), . . .},
X2 = {X2(t), X2(t + 1), X2(t + 2), . . .},

...
Xn = {Xn(t), Xn(t + 1), Xn(t + 2), . . .}.

(6.1)

Wemust now redefine the covariance. We do this by looking at a time window starting
at time t with a duration of K, where K is called the summation window

Covar
(
Xi,Xj

)
=

1
K

t+K−1∑

l=t

(
Xi(l) − μ

)(
Xj(l) − ν

)
, (6.2)

where μ and ν are the sample means in the summation window of Xi and Xj , respectively.
That is, μ = (1/K)

∑p=t+K−1
l=t Xi(l).
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If we think of X̂i and X̂j as the vectors X̂i = (Xi(t), . . . , Xi(t + K − 1)) (resp., for X̂j),
then we get that

Covar
(
Xi,Xj

)
=

1
K

(
X̂i − μ̂

)
·
(
X̂j − ν̂

)
, (6.3)

where “·” is the standard Euclidean dot product, and μ̂ is the lengthK vector (μ, . . . , μ) (resp.,
for ν̂). This is called the “Pearson Covariance.”

In other words, if we define the vectors ̂̂Xi = (X̂i(t)−μ)/
√
K, and ̂̂

Xj = (X̂j(t)−μ)/
√
K,

then we define the Pearson Correlation as follows.

Definition 6.1. CovarPearson(Xi,Xj) =
̂̂
Xi · ̂̂Xj , where “·” is the usual Euclidean inner product.

Now we define the Pearson Correlation as

ρ̂
(
Xi,Xj

)
=

CovarPearson
(
Xi,Xj

)

√
CovarPearson(Xi,Xi)CovarPearson

(
Xj,Xj

) = cos
(
Γ̂
)
. (6.4)

Here again Γ̂ corresponds to the standard Euclidean angle, known as the Pearson Correlation
Angle, and the resulting metric is the standard metric studied in classical spherical geometry
(see [4–6] or [7]).

Remark 6.2. The angle Γ̂ between ̂̂
Xi and

̂̂
Xj is the same as the angle between Xi and Xj , the

unit vectors corresponding to ̂̂
Xi and

̂̂
Xj .

7. Correlation Measures: Mn and Mn,a

To this point, we have developed a method that will numerically tell us the correlation
between two vectors. In this section, we will create two sets of functions that allow us to
measure the correlation across a set of vectors. The first set, {Mi,a}, is based upon taking
the volumes of i-simplices (a 1-simplex is a line, a 2-simplex a triangle, a 3-simplex is a
tetrahedron, etc.). The set of Mi,a benefits from computability but is not as precise as the
second set of measures {Mi}, that measure the volume of i-dimensional convex hulls.

Given a set of vectors {X1, . . . , Xm} ⊆ V , let U = {U1, . . . , Um} be the set of
corresponding unit vectors. We will define a way to measure the closeness of the Ui to each
other using the metric Γ. To do this, we define the diameter of U as

D = max
i,j

{
Γ
(
Ui,Uj

)}
. (7.1)

If all of the vectors are taken in the standard way to be points on the unit sphere, then the
diameter is a measure of the overall spread of the points. If the diameter is small, then the
vectors are all close together, hence highly correlated. Whereas if the diameter is large at least
some of the points are far apart, hence not highly correlated. The benefit of the diameter is that
it is an easy quantity to calculate; however, it can be somewhat misleading. If, for instance,
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a large number of points are clustered together and there is one outlying point, the diameter
can be quite large despite the fact that the points are generally quite correlated.

We now proceed to generalize the correlation measure defined by D. Let T be a
collection of t points on the n-sphere, and letD be the set of n-simplices made up of points in
T .

Definition 7.1. Mn,a(T) = maxΔ∈D{Vol(Δ)}.
This maximum is taken over the C = C(T, n+ 1) =

(
t

n+1

)
different n-simplices made of

points in T .

Definition 7.2. Mn(T) = Vol(H).

The volume used in Definition 7.2 is the spherical volume, andH is the convex hull of
the points of T with respect to the spherical measure. That is, it is the smallest geodesically
convex set containing T . (Geodesically convex means that any two points in the set have the
minimal geodesic between them completely in the set as well.)

The volume is computed by constructing the convex hull of T , then disregarding all
the points of T not contributing to the hull. The hull is then divided into its “essential” n-
simplices, and the volumes of these simplices are summed.

Mn and Mn,a are each measures of n-dimensional volume. Mn,a benefits from being
easily computable. Mn, though harder to compute, gives a better measure of the overall
spread of the vectors. However, in the one dimensional case, we have that M1 = M1,a = D,
the diameter. The reason for this is that when making the hull to computeM1 all, but the two
furthermost points will be disregarded. This equality is not true in general, a fact which can
be easily observed by plotting four points forming a quadrilateral, where M2,a < M2. In the
general case, however, we do have the inequality Mn,a(T) ≤ Mn(T). This follows since the
maximal simplex will necessarily be a subset of the convex hull. Since volume is monotonic,
we have the inequality.

Assume that s of the t points of T are essential to the convex hull. There is a constant
B = B(s, n) defining the number of essential simplices that compose the convex hull. That is,

Mn(T) = the sum of the volume of B-essential simplices. (7.2)

Replacing the volume of each spherical simplex with the maximal one, that is, Mn,a(T), we
get the following inequalities

Mn,a(T) ≤ Mn(T) ≤ B ·Mn,a(T). (7.3)

Since B depends only on the number of points in T , we see that, for a fixed data set, Mn and
Mn,a differ by at most a fixed constant.

To relate Mn and Mn,a to Section 6, we note that when T time-dependent random
variables are looked at over a summation window of length K = n + 1, then we get T points
on the n-sphere. In this situation, we can apply the measures of spread given by Mn(T) or
Mn,a(T) or Mk,a(T) for k < n.



ISRN Applied Mathematics 9

0

30

60

90

0

30

60

90

1870 1880 1890 1900 1910 1920 1930 1940

A
(d

eg
re
es
)

D
(d

eg
re
es
)

Area

Diameter

1 2 3 4 5 6 7 8 9 10 11

Diameter D and area A

4a 6a 10a 10b

(a)

0

30

60

90

0

30

60

90

1940 1950 1960 1970 1980 1990 2000 2010

A
(d

eg
re
es
)

D
(d

eg
re
es
)

Area

Diameter

12 13 14 15 16 17 18

Diameter D and area A

12a 12b 12c12d 14a 15a15b 16a 17a

(b)

Figure 1: (a) 1870–1940. (b)1940–2010. The plots are for two different correlation measures among a set of
four global climate indices—the diameter D = M1,a (in red) and the area A = M2,a (in blue) are defined
in the text. Minima correspond to high correlation. The diameterD plot shows 18 identified minima while
the area A plot shows 30. Comparisons are given in Table 1.

8. Topology of Earth’s Climate Indices and Phase-Locked States

In this section, we apply our new correlation measure to data from Douglass’s paper [1]. In
[1], the diameter (M1 = M1,a) is used to analyze a set of climate data; in this section, we
use M2,a to analyze the same data. Comparing the results of the new analysis to Douglass’s
original analysis shows the increased effectiveness of the new correlation measure.
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Table 1: Date of various minima in plots of diameter D = M1,a or area A = M2,a. (Minima are identified
with a change in the phase-locked state of the Earth’s climate system).

Diameter D (from the 3
Pacific indices [1]) Area A (this paper)

1 1875-1876 1875-1876
2 1880-1881 1880-1881
3 1882–1884 1883-1884
4 1889–1891 1889
4a 1892 New
5 1894-1895 1894-1895
6 1897-1898 1897
6a 1904 New
7 1908-1909 1907-1908
8 1912-1913 1912-1913
9 1916-1917 X No minimum
10 1919 1919
10a 1925 New
10b 1928 New
11 1931 1931

12 1941–1945 1941 The broad minimum in [1]
has been resolved into two.

12a 1944
12b 1948 New
12c 1953 New
12d 1955 New
13 1956–1959 1959

14 1964–1966 1965 The minimum in [1] has
been resolved into two.

14a 1966
15 1969 1968-1969
15a 1972-73 New
15b 1974-75 New
16 1976-1977 1976-77
16a 1984-85 New
17 1986-1987 1986-87
17a 1991 New
18 2001-2002 2001
Number of minima 18 30

Various regions of the Earth’s climate system are characterized by temperature and
pressure indices. Douglass [1], in a study of a global set of four indices, defines a distance

Γ̂ij(t) = cos−1
(∣∣ρ̂

[
Xi(t), Xj(t)

]∣∣) (8.1)

between indices that satisfies the properties required to be a metric (Definition 3.4), where
ρ(Xi(t), Xj(t)) is the Pearson correlation coefficient. Note that the distance Γ is an angle.
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In Section 7 the correlation among a set of indices can be measured, using Mi,a by
taking the volumes of i-simplices. In [1], Douglass uses the diameter of the metric space
(I0,Γ), defined as

DI0(t) = max
i,j

{
Γ
[
Xi(t), Xj(t)

] | i, j ∈ I0
}
. (8.2)

In the notation of Section 7, D = M1,a. Geometrically, D selects the largest angle
Γ(Xi,Xj) among the set. The diameter D may be considered a “dissimilarity” index because
large D means weak correlation. Thus, the minima in D are associated with high correlation
among the elements of the set. In Douglass, [1], two cases were considered: (1) the set of 3
Pacific ocean indices and (2) the global set of 4 indices (6 independent pairs). The D of the
global set is shown (in red) in Figure 1.

The maximal area M2,a, the generalized correlation measure, was computed for the
same four indices of [1]. The plot for the calculation is shown (blue) in Figures 1(a) and 1(b).
Comparison of the two plots shows that the area measure reveals more minima (30) than the
diameter (18). The various minima are indicated by arrows in Figures 1(a) and 1(b), and a
list of dates is given in Table 1.

9. Summary

By using covariance on a set of time-independent random variables or the covariance defined
by the Pearson correlation on a set of time-dependent variables, we create metrics Γ and Γ̂
(resp.) on the unit sphere (resp., projective space) of the corresponding formal vector spaces.
If V is the n-dimensional formal vector space whose basis is the set of random variables
{X1, . . . , Xn}, we use Γ or Γ̂ to create Mn or Mn,a, two measures of spread on values taken by
the Xi. In Section 8, we give an explicit example of showing the use ofM2,a on a global set of
climate indices.

The two measures of spread differ by at most a fixed multiplicative constant, so for
theoretical purposes, they are of equivalent use. However, when applied, they can have
different values. The volume of the convex hull created of {X1, . . . , Xn}, given by Mn, is the
most precise measure of the correlation of theXi; however, it is computationally difficult. The
maximal volume of all possible n-simplices defined by the Xi, given by Mn,a, is a rougher
measure of correlation. However, Mn,a is a simpler computation thanMn.

In the 2-dimensional example, where all the vectors lie on the 2-sphere, one can apply
M2,a, M2, or M1,a = Diameter. But in general M1,a is coarser than M2,a but is significantly
easier to compute. For example, in [1] and Section 8, the use of M2,a yields much finer and
cleaner results than the use of M1,a. More generally in n-dimensions Ml and Ml,a for any
l ≤ n, and one sacrifices accuracy for ease.
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