Weak-values technique for velocity measurements

Gerardo I. Viza,1,*, Julián Martínez-Rincón,2 Gregory A. Howland,1 Hadas Frostig,1 Itay Shomroni,1 Barak Dayan,1 and John C. Howell1,2

1Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
2Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
*Corresponding author: gerviza@pas.rochester.edu

Received May 14, 2013; accepted June 27, 2013; posted July 11, 2013 (Doc. ID 190419); published August 5, 2013

In a recent Letter, Brunner and Simon proposed an interferometric scheme using imaginary weak values with a frequency-domain analysis to outperform standard interferometry in longitudinal phase shifts [Phys. Rev. Lett. 105, 010405 (2010)]. Here we demonstrate an interferometric scheme combined with a time-domain analysis to measure longitudinal velocities. The technique employs the near-destructive interference of non-Fourier limited pulses, one Doppler shifted due to a moving mirror in a Michelson interferometer. We achieve a velocity measurement of 400 fm/s and show our estimator to be efficient by reaching its Cramér–Rao bound. © 2013 Optical Society of America

OCIS codes: (030.0030) Coherence and statistical optics; (030.5260) Photon counting; (030.5290) Photon statistics; (120.0120) Instrumentation, measurement, and metrology; (120.3180) Interferometry; (120.3940) Metrology.

http://dx.doi.org/10.1364/OL.38.002949

In information theory, the Cramér–Rao bound (CRB) [1,2] is the fundamental limit in the minimum uncertainty for parameter estimation. Measurements of phase [3–5], beam deflection [6,7], pulse arrival time [8], Doppler shift [9,10], and velocity [11–14] are all fundamentally bounded by a CRB. If a measurement technique reaches the CRB, its estimator is said to be efficient.

Spurred by fundamental studies of quantum phenomena [15] and by developments in precision measurements [3,5,7,16], the field of weak values [17–21] has become a powerful tool for parameter estimation [22–25]. The precision measurements inspired by weak values are not necessarily new or quantum. For example Zernike’s phase contrast imaging [26], awarded the 1953 Nobel prize, can be classified as a weak-values technique. An important aspect of the weak-values framework is that it provides a methodology for mitigating technical noise and amplifying an effect in one domain that is technologically difficult to observe in the conjugate domain.

Recently, Brunner and Simon showed that a weak-values technique allows us to observe a large spectral shift induced by a small temporal shift. They also showed their technique outperforms standard interferometry limited by technical noise [5]. Here we consider the opposite regime, in which a small spectral shift causes a large temporal shift. The spectral shift in our experiment is a Doppler frequency shift produced by a moving mirror. Using established interferometry to measure velocities arriving at the CRB is difficult but achievable as seen in [2]. Our technique is comparable to standard interferometry, but allows us to reach its CRB with a relatively simple method. In this Letter we show a weak-values optical technique to measure sub-picometers/second velocities. The protocol reaches the predicted CRB, averting technical noise and experimental imperfections.

The protocol, shown in Fig. 1, uses a non-Fourier limited Gaussian pulse (i.e., $c\tau \gg$ coherence length of the laser, where τ is the length of the pulse). The pulse, with initial intensity profile $I_{\text{in}}(t) = I_0 \exp(-t^2/2\tau^2)$, is sent through a Michelson interferometer with a slowly moving mirror in one arm. The interferometer is tuned slightly off destructive interference by an amount 2ϕ, such that the output signal takes the form

$$I_{\text{out}}(t) \propto I_{\text{in}}(t)[1 - \exp(i2\phi + i2kx(t))]^2$$

$$\propto I_0 \exp(-t^2/2\tau^2) \sin^2 \phi \left| \frac{\sin(\phi + kv\tau)}{\sin \phi} \right|^2.$$

where $k = 2\pi/\lambda$, $x(t) = vt$ and v is the velocity of the mirror. Assuming $kv\tau \ll \phi$, making a small angle approximation of ϕ and re-exponentiating the output intensity, we obtain

![Fig. 1. Optical modulator generates a non-Fourier limited Gaussian shaped pulse. We couple the pulse to a fiber and launch it to a Michelson interferometer where one mirror is moving with constant speed v. The interference is controlled by inducing a phase offset 2ϕ with the piezoelectric mirror.](image-url)
Near-destructive interference reduces the peak intensity of the pulse by a factor $\sin^2 \phi$, which is the probability for a single photon passing through the interferometer to reach the detector. Importantly, a time shift in the peak output intensity, $\delta t = 2kv^2/\phi$, has been induced with respect to the input. The velocity v can be obtained from measurements of the time shift δt. The theory works because $ct \gg$ coherence length of the laser $\gg \phi$.

We can rewrite the time shift in Eq. (2) in terms of the spectral shift $\delta t = 2kv^2/\phi = 2\pi f_d v^2/\phi$, where the spectral shift, $f_d = 2v/\tau$, of the pulse is proportional to velocity v. Instead of a direct spectral measurement, we obtain the velocity by measuring the induced time shift of the non-Fourier limited pulses. The time shift is amplified in the measurement of v, which is accompanied by a decrease in the measured intensity. These two results are well-known properties of the interferometric weak-values amplification technique. In fact, a full weak-values description [27], using coherent Fourier limited pulses, can be formulated obtaining an identical result to Eq. (2).

We now consider the fundamental limitations of our velocity measurement set by the CRB. The CRB is equal to the inverse of the Fisher information, the amount of information a random variable (arrival time of photons) provides about a parameter of interest (velocity). Assume that N photons are sent through the interferometer. We want to determine the shift δt from the set of $N \sin^2 \phi$ independent measurements of photon arrival times. Such measurements follow the distribution $P(t; \delta t) = (2\pi t^2)^{-1/2} \exp[-(t-\delta t)^2/2\tau^2]$. The Fisher information is

$$F(\delta t) = N \sin^2 \phi \int dt P(t; \delta t) \left[\frac{d}{d\delta t} \ln P(t; \delta t) \right]^2 \approx \frac{N\phi^2}{\tau^2}. \quad (3)$$

The CRB, F^{-1}, is the minimum variance [28,29] of an unbiased estimation of δt. The sensitivity in the determination of δt is therefore bounded by $\Delta(\delta t) \geq \tau/\phi\sqrt{N}$. The error in the estimation of v is then bounded by

$$\Delta v_{\text{CRB}} = \frac{\Delta(\delta t)\phi}{2k\tau^2} = \frac{1}{2k\tau\sqrt{N}}. \quad (4)$$

Note that this minimum uncertainty is independent of the actual value of v measured. This also determines the smallest resolvable velocity, when the signal-to-noise ratio is unity. The signal-to-noise ratio is

$$SNR = \frac{\delta t}{\tau} \phi \sqrt{N} = \frac{v}{\Delta v} = \frac{f_d}{\Delta f_d}. \quad (5)$$

In this Letter we focus on the velocity because the velocity of the mirror is independent of the laser source, i.e., λ.

We use a grating feedback laser with $\lambda \approx 780$ nm. An acoustic optical modulator creates Gaussian pulses of length τ that we couple into a fiber. We launch them through the 50:50 beam splitter (BS) of the interferometer. The piezoelectric actuated mirror is driven by a triangle function with frequency f_m and peak-to-peak voltage V_{pp}. The pulse length is smaller than half the oscillating mirror period, so that a pulse experiences a single, constant velocity. An opposite constant velocity is observed for each sequential pulse because the sign depends on whether the mirror moves toward the BS or recedes away (see Fig. 1). The piezoelectric response α is calibrated by varying the voltage to change the dark voltage product. The

$$I_{out}(t) \approx (I_0 \sin^2 \phi) \exp \left[-\frac{1}{2\tau^2} \left(t - \frac{2kv^2}{\phi} \right)^2 \right]. \quad (2)$$

To calibrate the experiment, we record the number of detected photons entering the interferometer, N. Then, the piezo-driven mirror is biased near destructive interference and fed a triangle signal. We calculate the mean and error of the arrival time of the $N\phi$ detected photons for each set of pulses. The mean of the Gaussian determines the time shift δt from which the velocity is extracted, and the angle $\phi \approx \sqrt{N\phi}/N$ is calculated. Last, to reach the CRB we attenuate the peak of the pulses to about 1 million photons per second.

We present velocity measurements v as a function of the pulsewidth τ for different amplitudes on the moving mirror in Fig. 2. The lines are the theoretical predictions, $v = 2f_m V_{pp} \alpha$, where $2f_m = 1/6\tau$. The mirror voltages are $V_{pp} = \{105, 52.5, 26.25, 10.5\}$ mV, and angle is $\phi = 0.31 \pm 0.02$ rad. The results agree well with the theoretical predictions. The smallest measurement of velocity in

![Fig. 2. Velocity of the mirror, v, is plotted as a function of τ = \{1.67, 4.17, 16.7, 417, and 833\} ms. The phase offset angle is $\phi = 0.31$ radians. The points are the experimental results, and the lines are the theoretical predictions for different voltages. Signal-to-noise ratios are 54, 27.4, 14.7, and 5.7 for $V_{pp} = \{105, 52.5, 26.25, 10.5\}$ mV, respectively.](image-url)
Fig. 2 is \(v = 60 \pm 11 \) pm/s. The angle \(\phi = 0.31 \) might seem large; however, comparing the exact form in Eq. (1), \(|\sin(\phi + kvt)/\sin(\phi)| \), to the approximation, \(|\exp(kvt/\phi)| \), shows a discrepancy less than 1% for the experimental parameters.

The uncertainties of the measurements in Fig. 2 are plotted separately in Fig. 3 and compared to the CRB Eq. (4). The error matches the CRB; thus the estimator is efficient and no other estimator can produce smaller uncertainties. This technique did not require noise filters or frequency locking to reach the fundamental uncertainty in the mean arrival time of the photons. In addition, the fluctuations in the postselection angle \(\phi \) are negligible. Therefore, our velocity measurement is fundamentally bounded by its CRB.

It is important to note our CRB is scaled by the maximum number of detected photons \(N \). The collection-detection efficiency is about 20% due to the 50:50 BS (not shown in Fig. 1) located before the APD used for alignment of the dark port, the efficiencies of the APD, and the fiber coupling. Our calculations do not take the collection-detection efficiency into account.

The results show precise and accurate detection of velocity measurements in the picometers/second range. Results from Fig. 2 show smaller velocities can be measured with longer pulses.

Now we seek to achieve the smallest velocities without the concern of reaching the CRB. Consider the temporal shift, advance, or delay, of the pulse exiting the interferometer. Since the peak of the pulse is sufficient to detect a shift, we require a small region around the peak to determine the shift. This allows the use of effectively large values of \(\tau \) without requiring long-term interferometric stability. Since the pulses are non-Fourier transform limited, it is not necessary to use an entire Gaussian pulse. We truncate the Gaussian pulse to a width of \(\tau \), which is \(2\tau_m = 1/\tau \). In other words, the light intensity into the interferometer never drops below 88% of the peak intensity, and there is 12% peak-to-peak intensity variation following the peak of the Gaussian profile.

We show velocities in the sub-picometers/second range using truncated pulses in Table 1. The mirror frequency was set to 10 mHz, which corresponds to \(\tau = 50 \) s, and data were taken for voltages peak to peak, \(V_{pp} = \{2, 1, 0.5\} \) mV, for the piezo driving the mirror. Data was collected in intervals of 10 min (due to drift instability in intensity), and 13 sets of data were taken for each voltage. We did a Gaussian fit for each 10 min interval. The time shift and its error were found as the mean and standard deviation, respectively, of the 13 time shifts obtained. The time shift was in the 10 s of millisecond and corresponds to small Doppler shifts in the microhertz range. This leads to the best technical noise limited measurement (400 ± 400) fm/s. Nevertheless, both accuracy and precision are lost due to numerically fitting the truncated distributions. Note that the measurements are all relative velocities because of the oscillating mirror. In one period there are two pulses, each with opposite but equal speeds.

The results remain consistent with the full Gaussian picture theory, Eq. (2), but not with the CRB theory in Eq. (4). Calculating the mean arrival time of the photons is not a good estimator of the time shift because we lack the full Gaussian pulse profile. Therefore, we numerically fit the data to a normalized function \(A \exp[-(t - \delta t)^2/2\tau^2] \), the shift \(\delta t \) is extracted, and the velocity, \(v \), is backed out.

In this Letter, we show that using non-Fourier limited pulses and standard interferometry inspired by weak values, sub-picometers/second velocities can be measured. Using a Michelson interferometer tuned near a dark port, we measure velocities as low as 400 ± 400 fm/s. We accomplished sub-picometers/second velocity detection mitigating technical to reach a shot noise CRB. The uncertainty of the phase measurement is negligible when compared to the uncertainty of \(v \) for our parameter values, so our uncertainty is the fundamental limit. Finally, the error in our measurement of \(v \) matches the predicted CRB, making this estimator efficient and the ultimate limit in uncertainty for velocity measurements.

This work was supported by the Army Research Office, Grant No. W911NF-12-1-0263.

Table 1. Results of the Cut Gaussian Profile with \(\tau = 50 \) s and \(N \approx 66 \times 10^6 \)

<table>
<thead>
<tr>
<th>(V_{pp}) [mV]</th>
<th>(\phi) [±0.002 rad]</th>
<th>(f_s) [µHz]</th>
<th>(v) [pm/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>0.275</td>
<td>3.6 ± 1.2</td>
<td>1.4 ± 0.5</td>
</tr>
<tr>
<td>1.0</td>
<td>0.276</td>
<td>1.6 ± 1.1</td>
<td>0.6 ± 0.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.279</td>
<td>1 ± 1</td>
<td>0.4 ± 0.4</td>
</tr>
</tbody>
</table>

The collection-detection efficiency is about 20%. The error is from the statistics of numerically fitting each run. Integration time was about 2 h worth of data.

References and Note

27. The system is prepared in the state $|\Psi\rangle \propto \exp[-t^2/4\tau^2] (|M\rangle + |P\rangle) \otimes |\alpha\rangle$, where the states $|M\rangle$ and $|P\rangle$ correspond to which arm (mirror or piezo-driven mirror) the light goes though, and $|\alpha\rangle$ is the coherent light state representation. The interaction can be expressed as $U \approx \exp[-i\omega_d t/2\hat{A}]$, where $\omega_d = 2\pi f_d$ and $\hat{A} = |M\rangle \langle M| - |P\rangle \langle P|$. The final post-selection is given by $|\langle M| - \exp(i2\phi)|P\rangle| / \sqrt{2}$. This gives a pure imaginary weak value protocol, where $A_w = -i \cot \phi \approx -i/\phi$.