A Clue to the Formation of Transitional Disks: Mass Accretion Rates

Kyoung Hee Kim (U of Rochester)

Dan Watson, Manoj P., Bill Forrest and the IRS_Disks Team

A disk around a young star, which is optically thick and gas rich, and has an AU-scale inner disk clearing or radial gap evident in its SED.

TD: Transitional Disk with **zero** excess at 5-8 µm

thick

outer disk

Calvet et al. 2005 DM Tau 10-10 $\lambda F_{\lambda}(erg\ cm^{-2}\ s^{-1})$ 10

Archetype: **DM Tau**

 $\lambda(\mu m)$

Protoplanetary disk around a young star that is optically thick and gas rich, with AU-scale inner disk clearing or a radial gap evident in the SED.

WTD: Transitional Disk with Weak excess at 5-8 µm

Archetype: **GM Aur** Calvet et al. 2005 10⁻⁹ GM Aur λF_λ(erg cm⁻² s⁻¹) 0 0 $\lambda(\mu m)$

Protoplanetary disk around a young star that is optically thick and gas rich, with AU-scale inner disk clearing or a radial gap evident in the SED.

PTD: Pre-Transitional Disk, moderate excess at 5-8 µm

Optically thick inner Wall

outer disk

Archetype: **UX Tau A** Espaillat et al. 2007, 2010

disk

Protoplanetary disk around a young star that is optically thick and gas rich, with AU-scale inner disk clearing or a radial gap evident in the SED.

From Spitzer-IRS: dimensions of gap (R_{wall})

From IRTF-SpeX: accretion rate

Kim et al. 2009, ApJ, 700, 1017 Kim et al. 2010, in preparation

Kim et al. 2009, ApJ, 700, 1017 Kim et al. 2010, in preparation

Summary

- 1. dM/dt of TDs are less than dM/dt of PTDs; dM/dt of PTDs are still high (similar to or about factor of 10 lower to that of CTTS). \rightarrow Much too large to be explained by photoevaporative disk clearing, or by companions with masses as large as stars.
- 2. Trends: no correlations among dM/dt, R_{wall} , and L_x with normalization to M_{star} . \rightarrow This cannot be explained by inside-out clearing by MRI.

3. Giant Planet formation is suitable to explain our results!

