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Definition of Transitional Disk
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A disk around a young star, which is optically thick and gas rich, and has 
an AU-scale inner disk clearing or radial gap evident in its SED.

TD : Transitional Disk with zero excess 
at 5-8 μm
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Archetype: DM Tau
Calvet et al. 2005



WTD : Transitional Disk with Weak
excess at 5-8 μm
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Definition of Transitional Disk
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Protoplanetary disk around a young star that is optically thick and gas rich, 
with AU-scale inner disk clearing or a radial gap evident in the SED.

Archetype: GM Aur
Calvet et al. 2005
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Definition of Transitional Disk
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PTD : Pre-Transitional Disk, moderate 
excess at 5-8 μm

Protoplanetary disk around a young star that is optically thick and gas rich, 
with AU-scale inner disk clearing or a radial gap evident in the SED.

Archetype: UX Tau A
Espaillat et al. 2007, 2010
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Definition of Transitional Disk
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Protoplanetary disk around a young star that is optically thick and gas rich, 
with AU-scale inner disk clearing or a radial gap evident in the SED.



• IRS/Spitzer observations

▫ ~500 Class II objects in Tau, 
Cha I, Oph, Ori A (L1641, ONC)  

▫ Observed at 5-40 μm 

▫ λ/Δλ ~ 90 (SL, LL) or 

▫ λ/Δλ ~ 600 (SH, LH)

• 61 Transitional Disks found 

- SpTs cover G-M  

- 5 (Tau), 8(Cha I), 4(Oph-offcore), 

24(L1641), 20(ONC)  
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From Spitzer-IRS: dimensions of gap (Rwall)
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IRS - (a photosphere 
model or a power law)

A : optically thin dust 
model (for the optically 
thin atmosphere of the 
wall)

B: the wall with T

A+B : better 
continuum fit 
around 13-16 μm 
and 30-33 μm

See, Kim et al. (2009) for detail
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From IRTF-SpeX: accretion rate 

• SpeX / IRTF 

▫ 35 objects in Orion A during 2010A semester 

▫ Short XD (SXD) in 0.8-2.4 μm,  λ/Δλ ~ 1000  

• Mass accretion rate measurement 

▫ Lacc from luminosity of hydrogen recombination lines

-Pa γ (1.094 μm) (Natta et al. (2004)); 

- Pa β (1.282 μm) (Muzerolle et al. (1998))

- Br γ (2.166 μm) (Muzerolle et al. (1998))
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N correlation
Photo-

evaporation
MRI 

clearing
massive 

companion
giant planet 
formation

log(M*) vs. log(Rwall) 61 s, + Y Y

log(L*) vs. log(Rwall) 61 s, + Y Y

log(dM/dt) vs. log(M*) 47 m, + N N Y

log(LX/L*) vs. log(dM/dt) 14 nc Y

log(dM/dt) vs. log(Rwall) 47 nc N Y

log(LX) vs. log(dM/dt) 14 w,- N Y

log(LX) vs. log(Rwall) 19 nc N Y

log(L*) vs. log(dM/dt) 16 nc Y
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Summary
1. dM/dt of TDs are less than dM/dt of PTDs; dM/dt of PTDs are still high 
(similar to or about factor of 10 lower to that of CTTS). Much too large to 
be explained by photoevaporative disk clearing, or by companions with 
masses as large as stars.

2. Trends: no correlations among dM/dt, Rwall, and Lx with normalization to 
Mstar.  This cannot be explained by inside-out clearing by MRI.

3. Giant Planet formation is suitable to explain our results!

Giant Planet formation 
can explain all features 

of  transitional disks!!
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