Exam 2 (November 23, 2009)

Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary.

Problem 1 (4 pts, no need to show work):

Higher energy photons have (relative to lower energy photons)

- a) longer wavelengths.
- b) greater speed.
- c) higher frequency.
- d) all of the above.
- e) none of the above.

Problem 2 (4 pts, no need to show work):

In the Standard Model of particle physics there are how many distinct types of quarks?

- a) 2
- b) 4
- c) 6
- d) Just over 100
- e) There are no quarks in the Standard Model.

Problem 3 (4 pts, no need to show work):

In a double-slit experiment with an electron beam, quantum mechanics enables scientists to predict

- f) which slit the electron will come through.
- g) the place at which each electron will hit on the screen.
- h) the precise position and velocity of each electron.
- i) the pattern that a single electron will produce when it hits the screen.
- j) the overall pattern made by a large number of electron impacts on the screen.

Problem 4 (4 pts, no need to show work):

Roughly how many chemical compounds exist in nature?

- a) 6
- b) 25
- c) Just over 100
- d) Just over 500
- e) A very large number, much greater than 500

Problem 5 (4 pts, no need to show work):

An atom has four distinct energy levels that can be occupied by an electron. The number of spectral lines produced by this atom is

NAME

- a) 3
- b) 4
- c) 6
- d) 10
- e) Many more than 10

Problem 6 (4 pts, no need to show work):

In what way or ways do ³H and ³He differ?

- a) They have different numbers of protons.
- b) They have different number so neutrons.
- c) Both of the above.
- d) They have different atomic mass numbers.
- e) The numbers of protons, neutrons and atomic mass all differ.

Problem 7 (4 pts, no need to show work):

 $_{92}^{238}$ U alpha decays producing which daughter nucleus

a) ${}_{92}^{234}$ U b) ${}_{93}^{238}$ Np c) ${}_{90}^{236}$ Th d) ${}_{90}^{234}$ U e) ${}_{90}^{234}$ Th

Scores										
1/4										
2/4										
3/4										
4/4										
5/4										
6/4										
7/4										
8/4										
9/4										
10/4										
11/30										
12/10										
13/10										
14/10										
Total/100										

Problem 8 (4 pts, no need to show work):

What is the source of the energy for the creation of the heavy elements (heavier than iron)?

- a) hydrogen fusion
- b) fission
- c) gravitational collapse
- d) helium fusion
- e) the shock of a supernova explosion

Problem 9 (4 pts, no need to show work):

To an astronomer, a white dwarf is

- a) The end stage in the life cycle of a star with a mass between 0.8 and 1.4 solar masses where fusion has largely ceased and the star is held up by bare nuclei and electrons.
- b) A term for a 'star' with a mass less than 0.8 solar masses where fusion reactions never began in earnest.
- c) The name of Snow White's love child.
- d) The end stage in the life cycle of a star with a mass between 1.4 and 2.5 solar masses where fusion has largely ceased and the star is held up by a core of neutrons.
- e) The end stage in the life cycle of a large star where fusion has largely ceased and the star collapses to such a degree that even light cannot escape.

Problem 10 (4 pts, no need to show work):

A physicist cannot predict the exact time that a single ¹⁴C nucleus will decay because

- a) of the fact that we do not yet have powerful enough computers.
- b) of fundamental uncertainties associated with quantum mechanics.
- c) it is too difficult to determine the precise initial state of the protons and neutrons inside a nucleus.
- d) it depends on the exact origin of the nucleus, which is generally unknown.
- e) of the fact that the protons and neutrons exhibit quantum entanglement.

Problem 11 (30 pts, true or false, each part is worth 2 points):

- a) _____ Baryons are a bound state of three leptons.
- b) _____ The Higgs particle has yet to be discovered.
- c) _____ Quarks are the virtual particles that convey the strong force in quantum field theory.
- d) _____ The force of gravity is by far and away the weakest force yet observed in nature.
- e) _____ Due to their large electric charge, alpha particles are the most dangerous form of natural radiation from sources outside one's body.
- f) _____ The W and Z particles have zero mass.
- g) _____ A particle formed from a quark and an anti-quark is known as a meson.
- h) _____ Nuclear fusion is the power source for stars.
- i) _____ The process of small nuclei joining to form larger nuclei is known as fission.
- j) _____ In the Standard Model, photons are the virtual particles that hold electrons in atoms.
- k) _____ Neutrinos only interact with other particles via the weak nuclear force.
- 1) _____ The heaviest element likely to be found at the center of a massive stars is nitrogen.
- m) _____ Clocks on the moon move at a slightly slower rate than clocks at the surface of the earth.
- n) _____ Benzene (C_6H_6) is a chemical compound consisting of 12 atoms.
- o) $_{93}^{238}$ Np is a nucleus that has 93 protons and 238 neutrons.

Problem 12 (10 pts):

Suppose that you measure the frequency of carbon-14 decays in an old scroll said to contain a description of a story similar to one in the Bible. You find that the frequency of decays are roughly 6% of that measured in a freshly cut piece of wood. Is this document likely to have come from biblical times? Why or why not? (*Potentially useful information: the decay constant for carbon-14 is* $1.4x10^{-4}$ *year⁻¹ and the half-life of carbon-14 is* 5730 *years.*)

Problem 13 (10 pts):

Phosphors (a type of chemical) on the inside of fluorescent lamps convert ultraviolet light to visible light. Briefly explain how this might work and why are there no substances that convert visible light to ultraviolet light. (Take the average wavelength of visible light to be 10^{-7} meters and that for ultraviolet light to be 10^{-8} meters.)

Problem 10 (10 pts):

What is meant by the 'enrichment' of uranium and why is this technical process important to society?

Helium 2 Helium	4.0026 neon 10	Ne	20.180	argon 18	Ar	39.948	krypton 36	ĸ	83.80	xenon 54	Xe	131.29 radon	86	Rh	222							
	fluorine 9	ш	18.998	chlorine 17	Ū	35.453	bromine 35	В	79.904	iodine 53	_	126.90 astatine	85	At	[210]							
	oxygen 8	0	15.999	sulfur 16	S	32.065	selenium 34	Se	78.96	tellurium 52	Те	127.60 polonium	84	Ро	209			ytterbium 70	Υb	173.04 nobelium	102	No No
	nitrogen 7	Z	14.007	phosphorus 15	٩	30.974	arsenic 33	As	74.922	antimony 51	Sb	121.76 bismuth	83	B	208.98			thulium 69	Tm	168.93 mendelevium	101	Md
	carbon 6	ပ	12.011	silicon 14	Si	28.086	germanium 32	Ge	72.61	tin 50	Sn	118.71 lead	82	РЬ	207.2 ununquadium 114	Uud	[289]	erbium 68	Ш	167.26 fermium	100	Fm
	5 5	В	10.811	aluminium 13	AI	26.982	gallium 31	Ga	69.723	indium 49	h	114.82 thallium	81	F	204.38			holmium 67	Но	164.93 einsteinium	66	Es
							zinc 30	Zn	65.39	cadmium 48	Cd	112.41 mercurv	80	Hg	200.59 ununbium 112	Uub	[277]	dysprosium 66	D	162.50 californium	86	ູ່ບໍ
							copper 29	Cu	63.546	silver 47	Ag	107.87 dold	62	Au	196.9/ ununum 111	UIII	[272]	terbium 65	Tb	158.93 berkelium	97	B
							nickel 28	Ż	58.693	palladium 46	Pd	106.42 platinum	78	Ł	195.08 ununnilium 110	Uun	[271]	gadolinium 64	Gd	157.25 curium	96	Cm
							cobalt 27	ပိ	58.933	rhodium 45	Rh	102.91 iridium	77	<u> </u>	192.22 meitnerium 109	Mt	[268]	europium 63	Eu	151.96 americium	95	Am
							iron 26	Рe	55.845	ruthenium 44	Ru	101.07 osmium	76	Os	190.23 hassium 108	U H	[269]	62	Sm	150.36 plutonium	94	Pu
							manganese 25	Mn	54.938	n technetium 43	ЦС	[98] rhenium	75	Re	186.21 bohrium 107	Вh	[264]	promethium 61	Pm	[145] neptunium	93	aN
							chromium 24	S	51.996	molybdenun 42	Mo	95.94 tundsten	74	>	183.84 seaborgium 106	DCS.	[266]	n neodymium 60	Nd	144.24 uranium	92	
							vanadium 23	>	50.942	niobium 41	qN	92.906 tantalum	73	Ta	n dubnium 105	Db	[262]	praseodymiur 59	Ρ	140.91 protactinium	91	Pa
							titanium 22	F	47.867	zirconium 40	Zr	91.224 hafnium	72	Ŧ	1/8.49 rutherfordiur 104	Ŗ	[261]	cerium 58	Se	140.12 thorium	06	Ч
							scandium 21	Sc	44.956	yttrium 39	≻	88.906 Iutetium	71	Lu	1/4.9/ lawrencium 103	-	[262]	lanthanum 57	La	138.91 actinium	89	Ac
	ş												57-70	*	89-102	*		coiroc	201100		eries	
	beryllium 4	Be	9.0122	magnesium 12	Ma	24.305	calcium 20	Ca	40.078	strontium 38	Sr	87.62 barium	56	Ba	137.33 radium 88	Ra	226	honido	IIaIIIuc		tinide s	
	1.00/9 lithium 3		6.941	11	Na	22.990	potassium 19	×	39.098	rubidium 37	Rb	85.468 caesium	55	Cs	132.91 francium 87	Ļ	223	+40	Laiit		* * Aci	

Some potentially useful formulas

$$F = G M, M_{2} [M, and M_{2} in key] \rightarrow G = 6.7 \times 10^{-11}$$

$$F = \frac{M}{r^{2}} [9, 92] (9, 92 in Coulomks) \rightarrow k = 9.\times 10^{9}$$

$$F = Ma [Fin Newtons] \rightarrow k = 9.\times 10^{9}$$

$$F = Ma [Fin Newtons] \rightarrow k = 9.\times 10^{9}$$

$$F = Ma [Fin Newtons] \rightarrow k = 9.\times 10^{9}$$

$$F = Ma [Fin Newtons] \rightarrow k = 9.\times 10^{9}$$

$$F = Ma [Fin Newtons] \rightarrow k = 9.\times 10^{9}$$

$$F = Ma [Fin Newtons] \rightarrow k = 9.\times 10^{9}$$

$$K = Ma [Fin Newtons] \rightarrow k = 9.\times 10^{9}$$

$$F = Ma [Fin Newtons] \rightarrow k = 9.\times 10^{9}$$

$$F = Ma [Fin Newtons] \rightarrow k = 9.\times 10^{9}$$

$$F = Ma [Fin Newtons] \rightarrow k = 9.\times 10^{9}$$

$$K = \frac{4.5 \times 10^{-19} \text{ eV}}{5 \text{ speed of Sound}} = 380 \text{ M/s}$$

$$K = \frac{4.5 \times 10^{-19} \text{ eV}}{5 \text{ speed of Sound}} = 380 \text{ M/s}$$

$$h = 6.6 \times 10^{-34} \text{ J.s}$$

$$h = 6.6 \times 10^{-34} \text{ J.s}$$

$$f = \frac{1}{\sqrt{1 - (\frac{V}{2})^{2}}}$$

$$A = \frac{1}{\sqrt{1 - (\frac{V}{2})^{2}}}$$

$$A = \lambda N + \frac{1}{\sqrt{1 - (\frac{V}{2})^{2}}}$$