

Final Exam (December 16, 2009)

Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary.

Problem 1/(2 pts, no need to show work):

When you drop a ball it accelerates downward at 9.8 m/s². If you instead throw it downward, then its acceleration immediately after leaving your hand, assuming no air resistance, is

- (a) 9.8 m/s^2 .
- b) more than 9.8 m/s^2 .
- c) less than 9.8 m/s^2 .
- d) Cannot say, unless the speed of throw is given.

Problem 2 (2'pts, no need to show work):

A moving car hits a mosquito. The evidence of the event is left on the windshield for all to appreciate.

- a) The force exerted by the car on the mosquito is greater than the force exerted by the mosquito on the car.
- b) The force exerted by the car on the mosquito is less than the force exerted by the mosquito on the car.
- The force exerted by the car on the mosquito is the same as the force exerted by the mosquito on the car.
 - d) Nocturnal mosquitoes are made of dark matter and pass right through the windshield

Problem 3 (2 pts, no need to show work):

Suppose you suddenly found yourself on a planet with the same mass as Earth but twice the radius. Relative to your weight on Earth, your weight on the new planet would be

- a) Two times larger.
- b) Two times smaller.
- c) Four times larger.
- d) Four times smaller.
- e) The same.

 $\frac{GME^{M}}{(2R)^{2}} = \frac{1}{4} mg$

Problem 4 (2 pts, no need to show work):

All of the following are electromagnetic waves EXCEPT

- a) radio waves.
- b) microwaves.
- c) light waves.
- d) X-rays.
- There are no exceptions. All of the above are electromagnetic waves.

P102 University of Rochester NAME Soln Rey - SM S. Manly Fall 2009

Scores
1. 3/3

13. 30 /30

15. 6 /6

16. **%** /8

17. 6 /6

18. 🔏 /8

Total /100

Problem 5 (2 pts, no need to show work):

The phenomenon of interference occurs for

- a) sound waves.
- 1 b) light waves.
- Both of these.
 - d) Neither of these.

Problem 6 (2 pts, no need to show work):

The higgs particle

- a) is an as-yet-undiscovered particle that is an important component of the Standard Model of particle physics.
 - b) is the virtual particle (gauge boson) that conveys the strong nuclear force.
 - c) is thought to be the underlying cause of the increasing expansion rate of the universe.
 - d) is a bound state of three quarks.
 - e) is a form of natural radioactivity emitted by unstable heavy nuclei.

Problem 7 (2 pts, no need to show work):

The "string theory (or cosmic) landscape" refers to

- a) The set of P-branes thought to exist in M-theory.
- b) The distribution of light elements thought to be generated in the early stages of the big bang.
- c) The pattern of color (or temperature) variations in the cosmic microwave background according to a given string theories.
- The vast number of ways in which the extra dimensions in string theory can be compactified leading to differing vacuum energies and differing particle spectra and force characteristics.
 - e) The distribution of personalities present at theoretical physics conferences.

Problem 8 (2 pts, no need to show work):

The big bang is thought to have occurred about

- a) 5000 years ago.
- b) a million years ago.
- c) 14 million years ago.
- 14 billion years ago.
 - e) 14 trillion years ago.

University of Rochester P102 S. Manly Fall 2009

Solnkey - SlM

Problem 9 (3 pts, no need to show work):

The equivalence principle

a) claims that accelerated reference frames and gravitational effects are indistinguishable.

- b) argues that the fact that life has evolved in our universe places strict limits on the constants of nature.
- c) is the name generally given to Einstein's discovery of E=mc².
 - d) is the reason that neutrons and protons have almost the same mass.
 - e) is the name given to the idea that white dwarf stars and brown dwarf stars have masses that are almost the same.

Problem 10 (3 pts, no need to show work):

Our sun is expected to end its life as a

- (a) red giant star.
 - b) black hole.
 - c) brown dwarf star.
- white dwarf star. smouldering mass of dark matter.

Problem 11 (3 pts, no need to show work):

Galaxies are thought to be made mostly of dark matter. Evidence that supports this comes from observations of

- a) the redshift in the light from the explosions of distant supernovas
- b) the redshift in the light from the earliest galaxies in the universe.
- c) both of the above
- d) distant quasars.
- (e) the speeds at which stars and gas clouds orbit the centers of nearby galaxies.

Problem 12 (3 pts, no need to show work):

Most meteoroids – rocks moving through outser space – have been moving for billions of years. What, if anything, keeps them moving and why?

- a) According to Newton's law of gravity, the force of gravity keeps them moving.
- b) According Newton's laws, nothing is needed to keep them moving.
- According to Newton's law of gravity, nothing is needed to keep them moving.
- d) According to current theories about the creation of the universe, the expansion of the universe due to the big bang keeps them moving.
 - e) According to Newton's law of motion, their own acceleration keeps them moving.

P102 **University of Rochester** S. Manly Fall 2009

NAME Solukey-Sly

Problem 13 (30 pts, true or false, each part is worth 2 points):

- Higher momentum particles exhibit longer wavelengths.
- The muon is the virtual particle that conveys the weak nuclear force.
- c) ____ The force of gravity is only 10 times weaker than the weak nuclear force.
- d) ____ Dark matter particles have mass.
- e) _____ Dark energy refers to the energy carried by gluons during the early stages of the big bang.
- f) ____ Inflation is necessary for the bubble multiverse to exist.
- g) ____ Close inspection of the structure in the cosmic microwave background has revealed the space in the universe to be very close to flat.
- h) Nuclear fission is the power source for stars.
- i) ____ Most of the uranium in the universe was made during the first several minutes after the big bang.
- Some scientists claim that new universes might be spawned inside black holes.
- k) _____ The existence of dark matter is needed to account for the structure seen in the cosmic microwave background.
- According to the hot big bang model, the cosmic microwave background was formed during the period in the early universe when light nuclei were formed.
- m) ____ The discovery of supersymmetric particles would scientifically disprove most string theories.
- n) ____ Modern string theories include objects other than string-like objects.
- o) In string theory, compactification refers to the latter stage in the life cycle of massive stars when they collapse into black holes.

Problem 14 (6 pts, show work):

A clock-carrying-Superman zips past you at a speed of 90 percent the speed of light (0.9c).

You perceive each minute on the passing clock to last how many minutes according to the watch on your wrist?

The passing clock is supermois clock - this is the proper frame. The Time there is shorter than that measured in any other reference frame.

to 8 = tSupersum $V = \frac{1}{1 - (\frac{9}{5})^2} = 2.3$

The clock-carrying-Superman perceives each minute passing on your watch to last how

Same problem but in this case the proper frame is your wrist watch. Relative to that Superman would see each minute last 2.3 minutes by his clock

t 8=tsupernum

P102 **University of Rochester** S. Manly Fall 2009

NAME Solnkey - Slm

Problem 15 (6 pts, show work):

Radon-222 (222₈₆Rn) decays to Polonium-218 (218₈₄Po) with a half-life of 3.8 days.

a) When Radon decays to Polonium, what form of particle is emitted?

X particle

b) If a collected sample of gas initially exhibits 200 radon decays per minute, approximately how many radon decays per minute would you expect to measure 11 days later?

3.8 Jup

Problem 16 (8 pts):

Give very short descriptions of two experimental observations that provide scientific support for hot big bang cosmological models.

Expanding universe = redshift vs. distance graph for galaxies show that the further objects are away from us the higher the recession velocity The relative amounts of light elevents we see in the consumes correspond to exactly what you might expect from Big Burg nucleosynthosis The cosmic Microwne background is observed with the characteristics of right from early universe when heathed atoms were formed.

Give very short descriptions of two problems with hot big bang cosmological models that are solved by the addition of inflation to the earliest stage of the big bang.

- flowers of space - space could startly arbitrary geometry -> looks flat after inflation

- Horizan problem - universe starts small before intlation - all in causal contact, which explains how very distant puts of universe are at the same temperature

- small non uniformities blown up to great size them in Flation explains why universe so uniform

quentum fluctuations during inflation led to small non uniformities seen in early universe

- universe stats as sull quantum function that inflates Awiding a singularity

University of Rochester NAME Solh key - Sly

P102 University of S. Manly Fall 2009

Problem 17 (6 pts):

How might an astronomer identify the atomic elements present in a distant object?

by observing the spectrul lines en Hed by bright sources
or absorbed from passing light for dank objects.

Problem 18 (8 pts):

Choose and briefly defend one of the two following statements (an argument for either can be made and the points are awarded for how well you make that particular argument rather than which statement you defend):

Zusic points given here.

"The multiverse is not a scientific concept." -or- "The multiverse is a scientific concept."

Want conclud in discussion

not a scientific concept -

on test.

Science based on observation and falsifiability - not possible with multiple universes

is a scientific concept
toundation of multiverse concepts spring from science with

supporting experimental evidence — (quantum mechanics)

cosnology

can look at fundamental constants in our universe and see if they are typical for different multiverse ideas. e.g. - optimal for Blackhole production Typical for String landscape

Pelium 2 2 4.0026	10 10	Ne	20.180	argon 18	Ar	39.948 kronton	36	ネ	83.80	xenon 54	Xe	131.29	radon 86	R	[222]				
	fluorine 9	Щ	18,998	17 17	\overline{c}	35.453 hromine	35	Ŗ	79.904	iodine 53	_	126.90	astatine 85	At	[210]				
	oxygen 8	0	15.999	16 16	ഗ	32.065 selenium	34	Se	78.96	tellurium 52	P	127.60	polonium 84	Po	[209]				
	nitrogen 7	Z	14.007	pnospnorus 15	۵	30.974	33	As	74.922	antimony 51	Sb	121.76	bismuth 83	m	208.98				
	carbon 6	ပ	12.011	14 14	S	28.086	32	Ge	72.61	tin 50	Sn	118.71	ead 82	Pb	207.2	unundnadium	<u> </u>	bno	[289]
	boron 5	m	10.811	aluminum 13	A	26.982	31	Ga	69.723	indium 49	2	114.82	thallium 81	F	204.38				
						zinc	30	Zn	65.39	cadmium 48	Cq	112.41	mercuny 80	P	200.59	ununbium	7 .	ann	[277]
								CC	15			\neg					_	_	[272]
						niokal	28	Z	58,693	palladium 46	Pd	106.42	platinum 78	Ŧ	195.08	ununullium	2		[271]
						Pohalt	27	ပ္ပ	58.933	rhodium 45	R	102.91	ridium 77	_	192.22	meitnerium	201	M	[268]
						uwi	56	Fe	55.845	ruthenium 44	Ru	101.07	osmium 76	0s	190.23	hassium	8 _	S	[269]
						asadabaan	25	M	54.938	technetium 43	C	[86]	rhenium 75	Re	186.21	bohrium	2	בח	[264]
						chromium		ပ်	_			_			_	_			_
						wanadiim		>				_			_				_
						17		F	- 23						-				
								Sc				- 1							
						2								*	- 3	2000			
	beryllium 4	Be	9.0122	nagnesium 12	Mg	24.305	20	Ca	40.078	strontium 38	Sr	87.62			_	-		77-	_
hydrogen 1.0079	_		٠,	-					-3			_							
	i i						-		- ,			-	162			6301			_

	lanthanum	cerium	praseodymium		promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	
anthanida cariac	22	28	29		61	62	63	29	65	99	29	89	69	
	Гa	ပ္ပ	Pr		Pm	Sm	En	gd	Tp	D	웃	Щ	H	
	138.91	140.12	140.91		[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	
	actinium	thorium	protactinium		neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	1000
Actinide series	68	90	91		93	94	95	96	26	86	66	100	101	
	Ac	드	Ра		Q Q	Pu	Am	CH	BK	Ç	Es	Fm	Mo	å
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	

Some potentially useful formulas

$$V = \frac{\Delta x}{\Delta t}$$

Mork = Force x distance Momentum = P = MV

$$8 = \frac{1}{\sqrt{1 - \left(\frac{\lambda}{c}\right)^2}}$$

$$C = 3 \times 10^{8} \text{ M/S}$$

$$h = 6.6 \times 10^{-34} \text{ J.s}$$

$$0 \times 10^{-15} \text{ eV} \cdot \text{S}$$

$$\begin{array}{l}
\Lambda = \frac{h}{P} = \frac{h}{m}, \\
V = \lambda \nu
\end{array}$$

$$V = \frac{1}{T} \quad (T = period)$$

$$E = h \nu$$