Exam 3 (April 25, 2006)
Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show your work. Partial credit will be given.

Problem 1 (16 pts , no partial credit for each part):
No need to justify
In each of the four cases below, indicate the direction of current flow in the rectangular wire loop " A ". In all instances, the rectangular loop is in the plane of the paper. If no cumentis induced write "No induced current."
(a)

Siraight wine and $\operatorname{loop} A$
are in the same plane
(C) B in and uniform

Loop A moving out of region
wo uniform B with
velocity v
(b)

C irular current loop
Surrounding $\log A-$ in the same plane (of paper)
(d)

No induced cement
\vec{B} and loop A are both
in plane of paper.
\vec{B} is increasing in Strength

Problem 2 (12 pts, show work/logic to get credit):
You place a single loop of wire 0.5 m by 0.3 m perpendicular to a field of 2.0 T . In 30 ms you turn the loop until it is parallel with the field. The average emf induced in this loop is
a) 0.3 V
b) 10 V
c) 5.0 V
d) 67 V
e) 20 V

$$
|\bar{\Sigma}|=10 \mathrm{~V}
$$

Problem 3 (15 pts, show work/logic to get credit):
A real object is placed 42 cm from a diverging lens with a focal length of 21 cm .
a) What is the power of this lens (in diopters)?

$$
P(\text { indionters })=\frac{1}{F(\operatorname{in} m)}
$$

$$
P=\frac{1}{-.21}=-4.8 \text { diopters }
$$

b) What is the location of the image?

$$
\frac{1}{i}+\frac{1}{0}=\frac{1}{f}
$$

$$
\frac{1}{i}+\frac{1}{.42}=-4.8
$$

$$
i=-.14 m
$$

$i=14 \mathrm{~cm}$ from lens to same side as object
c) Is the image real or virtual?

Virtual - i is on SAme side of lens as object
d) How does the height of the image compare to the height of the object?

$$
m=\frac{h_{i}}{h_{0}}=-\frac{i}{0}=-\frac{-.14}{.42}=+\frac{1}{3} \quad \text { image is } \frac{1}{3} \text { the height }
$$

1)	116
2)	$1 / 2$
3)	115
4)	112
5)	115
$6)$	115
7 7)	115
tot	1100

Problem 4 (12 pts, show work/logic to get credit):
At what distance will a 75-Watt light bulb have the same apparent brightness as a 120-Watt bulb viewed from a distance of 15 m ? brightness \approx intensity wa \quad Ns $/ \mathrm{m}^{2}$

get this by taking total WAMS + \div by area ofspelvene at radius r

Problem 5 (15 pts , show work/logic to get credit):
The Donald decides that his new building, Trump Castle, needs distinctive windows. So, he has a talented team of window makers coat all of the windows in the building with diamond. If a light ray is incident on one of the Donald's new windows at an angle of $\mathbf{3 0}$ degrees with respect to the normal, at what angle with respect to the normal will this light leave the window on the other side. That is to say, what angle will the transmitted ray make with the normal to the window?

$$
\text { (1) } \begin{aligned}
\sin 30 & =(2.5) \sin \theta_{1} \\
\theta_{1} & =11.5^{\circ}
\end{aligned}
$$

Problem 6 (15 pts , show work/logic to get credit):
Stanly Studmeister, biologist extraordinaire, likes to study butterflies. Recently, he's been trying to figure out the cause of the shimmering blue color on the wings of the Morpho butterfly. Knowing that you are a local physics god, Studmeister asks you to help him out. Below is sketch that Stanly made of what he saw through an electron microscope when he inspected the surface of a Morpho butterfly's wing. The sketch shows a cross-section of part of the wing. In other words, the wing in the drawing is oriented perpendicular to the paper. What you see are overlapping scale structures as shown in the sketch. Please use the concepts that we have discussed recently to explain briefly to Studmeister what causes the shimmering blue color of the wings. Feel free to use drawings and sketches as necessary. For your reference, the central wavelength of the blue color of the wings is approximately 440 nm .
The Morphs wings look blue because ot interference between list reflected gs from the different layers of the overlapping scales.

LeT us look at the interference between roup of light reflected off two successive sales.

There is phasechange of π upon reflection for each ray so that effect factors out of problem.

$$
\begin{aligned}
\lambda_{0}= & 2 n d_{1}+2 d_{2} \\
\lambda_{0}= & (2)(1.5)(64)+2(127)=446 \mathrm{~nm} \\
& \sim 440 \mathrm{~nm}
\end{aligned}
$$

\rightarrow color of wing

If pathlength difference is equal to $m \lambda$ than there will be consiructive interference.

$$
\begin{aligned}
& \Delta \text { path }=\frac{2 d_{1}}{\left(\lambda_{0} / n\right)}+\frac{2 d_{2}}{\lambda_{0}}=m \lambda_{0} \\
& \quad \begin{array}{l}
\text { inside } \\
\text { Scale Matenicul }(n=1.5)
\end{array}
\end{aligned}
$$

$$
\text { let } m=1 \quad \lambda_{0}=2 n d_{1}+2 d_{2}
$$

Problem 7 (15 pts , show work/logic to get credit):
A beam of light is a mixture of linearly polarized light and unpolarized light. When it is sent through a Polaroid sheet (a linearly polarizing sheet), it is found that the transmitted intensity can be varied by a factor of four depending on the orientation of the Polaroid sheet. Find the relative intensities of the two components of the incident beam.

$$
\begin{aligned}
& I=I_{\text {pol }}+I_{\text {unpol }} \underbrace{I_{\text {ungol }} \text { After sheet }}_{\substack{\text { Before sheet t } \\
I^{\prime} \\
\cos ^{2} \theta \\
I_{\text {pol }} \\
0 \text { to } 1}}+\frac{1}{2} I_{\text {ungual }}
\end{aligned}
$$

at lower and $I^{\prime}=\frac{1}{2} I_{\text {mppol }} \Rightarrow I_{\text {mol }}=2 I^{\prime}$
at upperend $4 I^{\prime}=I_{\text {pol }}+\frac{1}{2} I_{\text {uppol }}=I_{p o l}{ }^{+} I$.

$$
\begin{aligned}
& 3 I^{\prime}=I_{p o l} \\
& \frac{3 I^{\prime}}{2 I^{\prime}}=\frac{I_{p o l}}{I_{\text {unpol }}} \\
& \frac{3}{2}=\frac{I_{\text {pol }}}{I_{\text {mupol }}}
\end{aligned}
$$

