

Exam 2 (October 16, 2010)
Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given.

Problem 1 (9 pts, briefly indicate reasoning):
In the three cases shown below the current i_{B} is increasing with time. Indicate the direction of the induced current in the loop labeled A in each case. If there is no current induced in loop A, indicate that by writing "no current" beside loop A for that case.
a)

Both loops in
plane of paper
clockwise
want induced currant in A to Create \vec{B} in direction opposite to that of increasing \vec{B} from loop B
b)

Counterclockwise
len's lond - oppose \vec{B} increasing from increasing i_{B} in wire.
c)

iB into. paper
along axis of
circular loop A
No induced current-

$$
d \phi_{m} / d t=0
$$

Problem 2 (9 pts, show your work):
The sketch below shows an EMF arranged in series with a resister, R, and a capacitor, C. Qualitatively describe the current in loop B (which is in the same plane as loop A) as a function of time after switch S is closed in loop A. A graphical description is acceptable.

$$
\begin{aligned}
& \text { as capacitor chases } \\
& Q=c \varepsilon\left(1-e^{-t / \tau}\right) \\
&\left.\frac{d Q}{d t}\right|_{A}=\frac{c t}{\tau}\left(e^{-t / \tau}\right)
\end{aligned}
$$

$$
\underbrace{Q}_{t}
$$

$$
i_{A} \mid
$$

$$
\phi_{M} 1_{B} \text { gates in }
$$

of Changing

$$
\varepsilon_{A} \text { goes as } \phi_{M} \sim i_{A}
$$

comet \bar{B}
in B due to i_{A} is into papen and weakening exponentially. So i clockwise in Strength

Problem 3 (18 pts, use care, no partial credit for each part, no need to show work):

A charged particle moving at a constant speed enters a region of constant magnetic field as shown in the sketch below.

A number of changes to this initial situation are described in parts a-f below. Relative to this initial situation, select from choices $\mathrm{i}-\mathrm{v}$ below that describe how each change will affect the magnetic force on the particle shortly after it enters the magnetic field. Place the best choice (i, ii, iii, iv or v) next to the part where the change is described.
i) This change will alter only the direction of the force on the particle.
ii) This change will only increase the magnitude of the magnetic force on the particle.
iii) This change will only decrease the magnitude of the magnetic force on the particle.
iv) This change will alter both the magnitude and direction of the magnetic force on the particle.
v) This change will not affect the magnetic force on the particle.

Each change below refers to the initial situation described above:
a) 1 1 The +q particle is replaced by a +2 q particle.
b) $\quad i \quad$ The $+q$ particle is replaced by a $-q$ particle.
c) iV The +q particle is replaced by a neutral particle.
d) ii i The particle enters the region moving at a slower initial velocity.
e) ii The magnetic field is one-third its original strength.
f) iV The direction of the magnetic field is parallel to the particle's initial velocity.

1)	$/ 9$
2)	$/ 9$
$3)$	$/ 18$
$4)$	$/ 10$
$5)$	$/ 10$
$6)$	$/ 10$
$7)$	$/ 17$
$8)$	$/ 17$

Problem 4 (10 pts, show your work):
Consider the circuit below. Determine the current in R_{3}.

$$
\begin{aligned}
& V_{R^{\prime}}=i R^{\prime} \quad \text { dos a } R_{3}^{a n} \\
& V_{n^{\prime}}=(0.23) 13.3 \\
& V_{n^{\prime}}=3.06
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{R^{\prime}}=\frac{1}{R_{3}}+\frac{1}{R_{4}} \leadsto R^{\prime}=13.3 \Omega \\
& R^{\prime \prime}=13.3+25+15=53.3 \quad i=0.23 \mathrm{~A} \text { count circuit } \\
& 12=i R^{\prime \prime}=i 53.3 \quad V_{R^{\prime}}=i_{3} R_{3} \quad 3.06=i_{3} 40 \quad i_{3}=.08 \mathrm{~A}
\end{aligned}
$$

Problem 5 (10 pts, show your work):
A cubical volume with sides of length 1 m contains 1 coulomb of electric charge, evenly distributed. What will be the charge density in the volume as observed by a scientist in a spaceship traveling past the volume at 0.95 c . Assume the direction of travel for the spaceship is perpendicular to one of the faces of the cube of charge.
A mount of charge marfected dimension of cube parallel to direction of spaceship travel is

$$
\begin{aligned}
& S^{\prime}=\gamma Q / \mathrm{m}^{3} \\
& \gamma=\frac{1}{\sqrt{1-.95^{2}}}=3.2
\end{aligned}
$$

direction of space ship travel is
length contracted. ρ increased by factor of
Problem 6 (10 pts, show your work):
(a) What is the energy per unit length stored in an infinite solenoid of radius R_{1}, n turns per

$$
S^{\prime}=3.2^{\mathrm{Conl} / \mathrm{m}^{3}}
$$ unit length and carrying a current I ?

$$
\begin{aligned}
& B=\mu_{0} \text { in } \\
& u_{B}=\frac{B^{2}}{2 \mu_{0}}
\end{aligned}
$$

$$
\rho=Q / m^{3} \quad \rho^{\prime}=\gamma Q / m^{3}
$$

(b) What is the energy per unit length if the same solenoid is filled with a paramagnetic material of permeability μ ?

$$
\begin{aligned}
& B=x_{n}=0
\end{aligned}
$$

Consider the infinite cylindrical conductor or radius R_{1} sketched below. This conductor has a cylindrical hole of radius $\mathrm{R}_{2}<\mathrm{R}_{1} / 2$ along its length. The hole is adjacent to the surface as shown. The conductor carries a current I with a uniform current density. Determine the magnetic field at a point along the line joining the center of the conductor and the center of the hole, on the for $\mathrm{r}<\mathrm{R}_{1}$ on the side opposite the hole.

lack of symmetry prevents use of ampere's law on geometry us chain. So Assume geometry to left is equivalent to situation with

$$
\text { (A) } \operatorname{Ri}_{1} \rightarrow I+\text { (B) } I^{\prime}
$$

Find is along con use Angeles las for each + do Find ia long: con use Ampere
dashed line here
for $r<R_{1}$

$$
\text { Find }|\vec{j}| \rightarrow=I / \pi R_{1}^{2}-\pi R_{2}^{2}
$$

Find \vec{B} at $r<R_{\text {, on line below center for case } A}$

$$
\begin{aligned}
& \text { nd } \vec{B} \text { at } r<R_{1} \text { on line below center for case or } \\
& \int \vec{B} \cdot \overrightarrow{d l}=\mu_{0} i \text { end } \quad \vec{B}_{A} 2 \pi r=\mu_{0} \pi r^{2} j \quad \vec{B}_{A}=\frac{\mu_{0}}{2} j
\end{aligned}
$$

Find \vec{B} at $r<R_{\text {, on line below center for case } B}$

$$
\int \vec{B} \cdot d \vec{l}=\mu_{0} \text { ind } B_{B} 2 \pi\left(R_{1}+r-R_{2}\right)=\mu_{0} \pi R_{2}^{2} j
$$

$$
\vec{B}_{B}=\frac{\mu_{0}}{2} \frac{R_{2}^{2}}{\left(R_{1}+r-R_{2}\right)} j \text { counterclockwise }
$$

$\vec{B}=\frac{\mu_{0}}{2} \frac{I}{\left(\pi R_{1}^{2}-\pi R_{2}^{2}\right)}\left[r-R_{2}^{2} R_{1}+r-R_{2}\right]$ where posit ne means clocks wise

Problem 8 (17 pts, show your work):
An infinite straight wire carries current I. A thin, straight length of conductor moves in the direction along the wire at speed v as shown in the sketch. The moving conductor is perpendicular to the wire and oriented along a radial line from the current-carrying wire. Determine the potential difference between the two ends of the moving conductor.

\vec{B} around wine at rad us r

$$
\begin{aligned}
\int \bar{B} \cdot d \vec{l}= & \mu_{0} I \\
& |\vec{B}|=\frac{\mu_{0} I}{2 \pi r}
\end{aligned}
$$

Force on change at radius $R_{1}<r<R_{2}$ in conductor

$$
F=q^{V B}=q^{V} \frac{\mu_{0} I}{2 \pi r}
$$

$\frac{\omega}{q}$ to move q From R_{1} to $R_{2}=\Delta V_{\text {and s }}=\int_{R_{1}}^{R_{2}} \frac{\vec{F} \cdot \vec{d}}{q}$

$$
\Delta V_{\text {ends }}=\int_{R_{1}}^{R_{2}} \frac{v \mu_{0} I}{2 \pi r} d r=\frac{v \mu_{0} I}{2 \pi} \int_{R_{1}}^{R_{2}} \frac{1}{r} d r=\frac{v \mu_{0} I}{2 \pi} \ln \left|\frac{R_{2}}{R_{1}}\right|
$$

\qquad

ExAM 2 Formulas

$$
\begin{aligned}
& \vec{F}=q \vec{E} \\
& \vec{F}=\frac{k q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r_{12}} \hat{r}_{12} \\
& \phi_{E}=\oint \vec{E} \cdot \overrightarrow{d A} \\
& \oint \vec{E} \cdot \overrightarrow{d A}=\frac{Q_{\text {evelosal }}^{\epsilon_{0}}}{\epsilon_{0}} \\
& \vec{E}=\int_{v_{01}} \frac{k d Q}{r^{2}} \hat{r}
\end{aligned}
$$

Sphere: $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$
cylinder:

$$
\begin{aligned}
& A=2 \pi r L+2 \pi r^{2} \\
& V=\pi r^{2} L
\end{aligned}
$$

$V=$ work/charce
$V_{\text {POinT }}=\frac{k Q}{r}$

$$
\begin{aligned}
& V=\int_{V_{01}} \frac{k d Q}{r} \\
& E_{s}=-d V / d s
\end{aligned}
$$

$$
\begin{array}{ll}
x^{\prime}=\gamma(x-v t) & U_{x}^{\prime}=\frac{U_{x}-v}{1-\frac{v}{c^{2}} U_{x}} \\
y^{\prime}=9 & J^{\prime}=3 \\
t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) & U_{y, 3}^{\prime}=\frac{U_{y, 3}}{\gamma\left(1-U_{x} \frac{v}{c^{2}}\right)} \\
\gamma=\frac{1}{1-\left(\frac{v}{c}\right)^{2}} & E=\gamma m c^{2} \\
& P=m \eta=m \frac{d x}{d I}=m \gamma v
\end{array}
$$

$$
\begin{aligned}
& U_{\text {capacitor }}=\frac{1}{2} c v^{2} \quad Q=c \varepsilon\left(1-e^{-t / R c}\right) \\
& Q=c v \\
& Q=Q_{0} e^{-t / R c} \\
& E_{\text {\|plate }}=\sigma / \epsilon_{0} \\
& E=E_{0} / K \\
& U_{E}=\frac{\epsilon_{0}}{2} E^{2} \\
& \varepsilon=-d \varphi_{\mu} / d t \\
& p=i v=i^{2} R=v^{2} / R \\
& \phi_{M}=\oint \bar{B} \cdot d_{a} \\
& V=i R \\
& F=q \vec{v} \times \vec{B} \\
& |\vec{\mu}|=|n i A| \\
& \vec{L}=\vec{\mu} \times \vec{B} \\
& \oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I_{\text {incl }} \vec{B}_{\text {matter }}=\overrightarrow{X A}_{x} \vec{F}_{\text {free }} \\
& B_{\text {solenoid }}=\mu_{0} n i \\
& d \vec{B}=\frac{\mu_{0} i}{4 \pi} \frac{\overrightarrow{d l} \times \hat{r}}{r^{2}} \\
& \begin{array}{l}
\int u^{n} d u=\frac{u^{n+1}}{n+1} \\
\int \frac{d v}{u}=\ln |u| \\
\int e^{u} d u=e^{u} \\
\int \frac{x d x}{\left(x^{2}+u^{2}\right)^{1 / 2}}=\sqrt{x^{2}+u^{2}}
\end{array}
\end{aligned}
$$

