

Exam 1 （October 10，2007）

Please read the problems carefully and answer them in the space provided．Write on the back of the page，if necessary．Show your work where requested in order to be considered for partial credit．In problems where you are requested to show your work， no credit will be given unless your work is shown．

4
 Problem 1 （8 pts，no need to show work）：

A body moves with constant speed in a straight line．Which of the following statements must be true？

2 －a）No force acts on the body．
b）A single constant force acts on the body in the direction of motion．
4 －dd A net force of zero acts on the body．
e）A constant net force acts on the body in the direction of motion．
い

Problem 2 （ $/$ pts，no need to show work）：

An object falling near the surface of the earth has a constant acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ ．This means that the

マ ー a）object falls 9.8 m during the first second of its motion．
b）object falls 9.8 m during each second of its motion．
ᄂ－（c）speed of the object increases by $9.8 \mathrm{~m} / \mathrm{s}$ during each second of its motion．
d）acceleration of the object increases by $9.8 \mathrm{~m} / \mathrm{s}^{2}$ during each second of its motion．
e）force of gravity on the object is 9.8 Newtons．

Problem 3 （20 pts，no need to show work）：

Put＂T＂next to statements you believe to be true，＂F＂next to statements you believe to be false， and＂N＂next to statements that are sometimes true and sometimes false．

$\frac{T}{F}$Sir Issac Newton formulated a useful theory of gravitation．
F Charles Coulomb discovered the fundamental nature of light in terms of electric and magnetic fields．
\boldsymbol{N} For any two people，time flows at exactly the same rate．－Yes，if in SAve inertial
Frame
\mathcal{F} Albert Einstein invented Newton＇s Laws．
T The New York Yankees baseball players are heavily overpaid． am e
of
Raf．

An object can be moving backward while having an acceleration that is forward．
$\underset{\sim}{\mathbf{N}}$ Objects with zero（no）net force on them do not move．
F Light waves exhibit interference while sound waves do not exhibit interference．
F Speed has both a direction and a magnitude（size）．
F x－rays have a longer wavelength than visible light．

Problem 4 (12 pts, no need to show work):
Briefly explain why you lurch forward in a bus that slows down suddenly?
By Newton's IST law a body in motion persists in that motion unless acted on by a ret force. When the bus slows down your body continues to move at the some speed until slowed down by the force of friction of the seat on your botten or the force of your hail on the hand has on seat in front of you. It feels as if you lunch foprand when what is really hapgerening, is that yogh amen' ' stopping as ta st.

Sam and Fred stand on the roof of Sue B, each enjoying a twelve-ounce can of a fine beverage. When they notice someone else on the roof coming near them, Sam and Fred decide to ditch their fine beverages. Sam reaches over the edge of the roof and drops his can. Fred leans out over the edge of the roof and throws his can straight down.

If the cans leave the boys' hands simultaneously and at the same height, which can hits the ground first? The con that is thrown (fred's) hits the ground I ST.

While in the air after leaving the hands, which can has the greater acceleration, or are they the same?
Both cons experience the same force at ter leaving the hands. Just thur force due to giusing... SAme for both. F=ma mans accelerations Problem 6 (10 pts, show work):
Earthbound doctors monitor the heartbeat of astronauts in a ship flying past earth with a speed of 0.9 c . If one of the astronauts measures her heartbeat to be 70 beat/minute, what do the doctors on earth perceive her heart rate to be (in beats/minute)?
$\gamma=\frac{1}{\sqrt{1-\left(\frac{.9 C}{c}\right)^{2}}}=2.3$ Time for 1 heart beat in "proper" frame on spaceship

$$
=\frac{1}{70} \mathrm{~min}=0.014 \mathrm{Min}
$$

Time meas on earth longer ... time dilation

$$
\begin{gathered}
\Delta t^{\prime}=\gamma \Delta t_{\text {progestin }}=(2.3) \frac{1}{70} \mathrm{~min}=\begin{array}{l}
0.03 \mathrm{~min} \\
\text { Per beat }
\end{array} \\
\frac{1}{.03} \mathrm{~min} / \text { beat }=33 \text { beato/min }
\end{gathered}
$$

Meas. to be 33 bent/ μ in on earth

Problem 7 (12 pts):
Briefly discuss the following statement: "Scientific truths, religious truths - it's all the same. Just somebody telling somebody else how things are and what to do."
Religions truth is a Matter of opinion/fuith. It is NoT necessary for religious truth to be consistent with experimental observations. Science really has No truths, so to speak. Science bows to experinut. One experimental observation that contradicts a dearly held belief is sufficient to overthrow (or neussitate modification in) that belief/idea. Science does not urge Anyone to do anything. There is No moral system tied up in science. However scientific facts cam be used to help motivate people to tate one course of action over ans then.

Problem 8 (10 pts): 18 pts
Imagine two electrically charged particles are separated by a distance of 0.5 meters. Particle A has a mass of 2 kg and carries a positive electrical charge of +1 Coulombs. Particle B has a mass of 4 kg and carries a charge -1.5 Coulombs.
a) On the sketch below, indicate with a little arrow the direction of the electric field due to particle A at the point where particle B is located.
b) On the sketch below, indicate with a little arrow the direction of the electric field due to particle B at the point where particle A is located.
c) On the sketch below, indicate with a little arrow the direction of the electric due to both particles A and B at point C.
d) Is the electrical force between particles A and B attractive, repulsive, or is there no electrical force?

Problem 9 (10 pts, show work):
Consider a wave moving at $6 \mathrm{~m} / \mathrm{s}$ on a rope. I have frozen time momentarily and sketched the wave below from a side view. What you see is the displacement of the rope from the nominal vertical position with no wave passing along the y axis versus the position along the rope along the x axis. If I unfroze time, the shape you see would move to the right at $6 \mathrm{~m} / \mathrm{s}$.
a) What is the amplitude of the wave sketched below?
b) What is the wavelength of the wave sketched below?
c) What is the frequency of the wave sketched below?

$$
1.5 \mathrm{~Hz}_{\mathrm{j}} \text { or } 1.5 \frac{\mathrm{1}}{5}
$$

d) What is the period of the wave sketched below?

$$
T=\frac{1}{\nu}=.66 \mathrm{~s}
$$

$$
v=\lambda \nu
$$

$$
6 \mathrm{~m} / \mathrm{s}=4 \mathrm{MV}
$$

$$
v=1.5 \frac{1}{\mathrm{~s}}
$$

Some potentially usetul formulas

$$
\begin{array}{ll}
F=\frac{G m_{1} m_{2}}{r^{2}} & C=3 \times 10^{8 \mathrm{~m} / \mathrm{s}} \\
F=\frac{k q_{1} q_{2}}{r^{2}} & G=6.7 \times 10^{-11} \frac{\mathrm{Nm}}{\mathrm{~kg}^{2}} \\
F=m a & R=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{c}^{2}} \\
\text { (distance) }=(\text { speed }) \text { (tine) } & \\
V=\frac{\Delta x}{\Delta t} & \\
a=\frac{\Delta V}{\Delta t}
\end{array}
$$

Work $=$ force \times distance
Momentum $=p=m v$
$\Delta x^{\prime}=\gamma \Delta x, \Delta x$ longest in proper frame
$\Delta t^{\prime}=\gamma \Delta t$, Δt shortest in proper frame

$$
\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

$$
\begin{aligned}
& V=\lambda \nu \\
& \nu=\frac{1}{T} \quad(T \text { =ferial })
\end{aligned}
$$

