Exam 2 (April 22, 2009)

Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show your work where requested in order to be considered for partial credit. In problems where you are requested to show your work, no credit will be given unless your work is shown.

Problem 1 (true or false, each part is worth 2 points):

a) F In typical multi-electron atoms, the electrons all reside in the atom’s lowest energy quantum state.
b) F If a sample of uranium-235 is subcritical, a nuclear explosion is imminent.
c) T According to quantum field theory, the gluon is the virtual particle (gauge boson) responsible for conveying the strong nuclear force.
d) F The force of gravity is many times stronger than the weak nuclear force.
e) T A typical chemical reaction involves changes in energy of millions of electron-volts.
f) F Water is a chemical compound.
g) F Carbon dioxide (CO2) is an isotope of carbon monoxide (CO).
h) F According to quantum field theory, the Z particle is the virtual particle (gauge boson) responsible for conveying the strong nuclear force.
i) F According to quantum theory, the more precisely the position of an electron is determined the better known is the electron’s velocity.
j) F The Higgs particle was discovered (first seen) in 2006.
k) F A chain reaction refers to the chemical processes that occur when hydrogen is mixed with oxygen and a match.
l) F The strong nuclear force is stronger than the electromagnetic force.
m) F Nuclear fission is the energy source that powers stars.
n) F In quantum mechanics, the wave function specifies the exact position of a particle.
o) F Young stars are formed mostly of hydrogen.

Problem 2 (4 points):

A quantum state is

a) a term that refers to atoms that are able to emit photons.
b) a state that is smaller than most other states – for example, Rhode Island.
c) a phrase describing the frame of mind of a physicist who is contemplating the complicated aspects of matter.
d) a reference to the potential spatial regions and energies allowed for particles according to quantum mechanics.
e) the place where a particle is seen to be located.
Problem 3 (4 points):

You walk into a room that is contaminated with radioactive material. What factors are important in determining the potential danger to you of the radioactive material?

a) the location of the material relative to you.
b) the activity of the sample.
c) the time you spend in the proximity of the sample.
d) the type of radiation emitted by the sample.
e) All of the above.

Problem 4 (4 points):

Which of the four fundamental forces binds the nucleus together, and which binds the atom [electron orbits] together?

a) Strong nuclear force binds the nucleus, weak nuclear force binds the atom.
b) Gravity binds the nucleus, electromagnetic force binds the atom.
c) Weak nuclear force binds the nucleus, strong nuclear force binds the atom.
d) Electromagnetic force binds the nucleus, strong nuclear force binds the atom.
e) Strong nuclear force binds the nucleus, electromagnetic force binds the atom.

Problem 5 (4 points):

Quarks interact with other particles in nature via

a) the strong nuclear force.
b) the weak nuclear force.
c) the electromagnetic force.
d) gravitation.
e) all of the above.

Problem 6 (4 points):

The source of energy for the creation of most gold atoms (a gold atom is heavier than an iron atom) used in jewelry is

a) the gravitational collapse of a star.
b) a goldsmith’s smelter.
c) The fission of a heavier element such as radium or hafnium.
d) the shock wave of a supernova explosion at the end of the stellar life cycle for a large star.
e) the heat at the center of the earth.
Problem 7 (4 points):

Carbon is

a) an element.
b) a chemical compound.
c) made up entirely of protons.
d) chemically inert (unreactive).
e) never found in stars.

Problem 8 (5 points):

A nuclear fusion process occurs and is described by the equation below. Determine and provide the unknown nucleus (symbolized by X) in the equation.

\[\text{Be} + \text{Li} \rightarrow X \]

\[\text{Be} \quad Z=4 \rightarrow 4p, 3n \]
\[\text{Li} \quad Z=3 \rightarrow 3p, 3n \]

Problem 9 (6 points):

Suppose the nucleus below undergoes alpha decay, what is the nucleus left behind?

\[\text{Th} \rightarrow \alpha + X \]
\[X \text{ has } 90 - Z = 88 \text{ protons} = Z \]

Would you expect this process to release energy or absorb energy?

Problem 10 (5 points):

In the quark model of particle physics, is it possible to have a baryon with an electric charge of +2? If so, give a possible example. If not, why?

Problem 11 (10 points):

Briefly describe the relationship between quantum uncertainty and radioactive decay.

Nuclear decay is a quantum process. This means we can quantify the probability that a nucleus will decay in a given time, but we can't determine when any particular nucleus will decay - that is, the decay time for the individual nucleus is completely uncertain. (Sufficient ans. for full credit)

At a deeper level, the decay itself is a quantum process governed by, for example, uncertainties. Quantum the nonlocality of the \(\alpha \)-particle wave function - say, extending outside a nucleus - leads to eventual \(\alpha \)-decay, as there is a small but finite possibility the \(\alpha \) is outside the nucleus. (I don't think we discussed this)
Problem 12 (10 points):

The iodine isotope 131I is a naturally radioactive nucleus that emits a beta (e^-) with a half-life of 8 days. Because iodine is absorbed by the thyroid gland, people with malfunctioning thyroids can be treated medically by drinking a solution laced with 131I. The radioactive iodine decays and causes tissue damage preferentially in the thyroid.

a) What nuclear isotope does the 131I become when it decays?

\[^{131}\text{I} \rightarrow e^- + ^{131}\text{Xe} \ (\text{e}_\text{c}) \]

b) If a sample of 131I sitting on the hospital shelf has an activity of 200 decays per second today, how much time will pass before that activity drops to 25 decays per second?

\[t_{\frac{1}{2}} = 8 \text{ days} \]

\[\frac{\Delta N}{\Delta t} \text{ in 8 days:} \]

\[\begin{align*}
200 \rightarrow 50 \rightarrow 25 \text{ after 24 days.}
\end{align*} \]

Problem 13 (10 points):

In 1929, one of the big players in physics at the time, P.A.M. Dirac, said of quantum mechanics, “The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known …” Briefly defend or dispute Dirac’s assertion that quantum mechanics explains chemistry.

Defend

Quantum mechanics allows us to understand the energy levels and orbital shapes for electrons in atoms. Chemistry is a science concerned with interactions between atoms that involve the chemical behavior of electrons. Rearrangements of the orbit of each atom is governed by its electronic structure … which is, in principle, understandable by quantum mechanics.

Dispute

While the chemical behavior of atoms is dictated by their electronic structure, which can be understood through quantum mechanics, it is not practical to use quantum mechanics to calculate the behavior of large and complex systems. New phenomena (such as life) arise with complexity that are not predictable and calculable by quantum mechanics.
<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Mass Number</th>
<th>Period</th>
<th>Group</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>1</td>
<td>1.0079</td>
<td>1</td>
<td>1</td>
<td>IA</td>
</tr>
<tr>
<td>Lithium</td>
<td>3</td>
<td>6.941</td>
<td>2</td>
<td>1</td>
<td>IA</td>
</tr>
<tr>
<td>Beryllium</td>
<td>4</td>
<td>9.0122</td>
<td>2</td>
<td>2</td>
<td>IIA</td>
</tr>
<tr>
<td>Boron</td>
<td>5</td>
<td>10.811</td>
<td>2</td>
<td>3</td>
<td>IA</td>
</tr>
<tr>
<td>Carbon</td>
<td>6</td>
<td>12.011</td>
<td>2</td>
<td>4</td>
<td>IIA</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>7</td>
<td>14.007</td>
<td>2</td>
<td>5</td>
<td>IA</td>
</tr>
<tr>
<td>Oxygen</td>
<td>8</td>
<td>16.000</td>
<td>2</td>
<td>6</td>
<td>IIA</td>
</tr>
<tr>
<td>Fluorine</td>
<td>9</td>
<td>19.000</td>
<td>2</td>
<td>7</td>
<td>IA</td>
</tr>
<tr>
<td>Neon</td>
<td>10</td>
<td>20.180</td>
<td>2</td>
<td>8</td>
<td>IIA</td>
</tr>
<tr>
<td>Sodium</td>
<td>11</td>
<td>22.989</td>
<td>3</td>
<td>1</td>
<td>IA</td>
</tr>
<tr>
<td>Magnesium</td>
<td>12</td>
<td>24.305</td>
<td>3</td>
<td>2</td>
<td>IIA</td>
</tr>
<tr>
<td>Aluminum</td>
<td>13</td>
<td>26.982</td>
<td>3</td>
<td>3</td>
<td>IA</td>
</tr>
<tr>
<td>Silicon</td>
<td>14</td>
<td>28.086</td>
<td>3</td>
<td>4</td>
<td>IIA</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>15</td>
<td>30.974</td>
<td>3</td>
<td>5</td>
<td>IA</td>
</tr>
<tr>
<td>Sulfur</td>
<td>16</td>
<td>32.066</td>
<td>3</td>
<td>6</td>
<td>IIA</td>
</tr>
<tr>
<td>Chlorine</td>
<td>17</td>
<td>35.453</td>
<td>3</td>
<td>7</td>
<td>IA</td>
</tr>
<tr>
<td>Argon</td>
<td>18</td>
<td>39.948</td>
<td>3</td>
<td>8</td>
<td>IIA</td>
</tr>
<tr>
<td>Potassium</td>
<td>19</td>
<td>39.098</td>
<td>4</td>
<td>1</td>
<td>IA</td>
</tr>
<tr>
<td>Calcium</td>
<td>20</td>
<td>40.078</td>
<td>4</td>
<td>2</td>
<td>IIA</td>
</tr>
<tr>
<td>Scandium</td>
<td>21</td>
<td>44.956</td>
<td>4</td>
<td>3</td>
<td>IA</td>
</tr>
<tr>
<td>Titanium</td>
<td>22</td>
<td>47.867</td>
<td>4</td>
<td>4</td>
<td>IIA</td>
</tr>
<tr>
<td>Vanadium</td>
<td>23</td>
<td>50.942</td>
<td>4</td>
<td>5</td>
<td>IA</td>
</tr>
<tr>
<td>Chromium</td>
<td>24</td>
<td>51.996</td>
<td>4</td>
<td>6</td>
<td>IIA</td>
</tr>
<tr>
<td>Manganese</td>
<td>25</td>
<td>54.938</td>
<td>4</td>
<td>7</td>
<td>IA</td>
</tr>
<tr>
<td>Iron</td>
<td>26</td>
<td>55.847</td>
<td>4</td>
<td>8</td>
<td>IIA</td>
</tr>
<tr>
<td>Aluminum</td>
<td>27</td>
<td>58.933</td>
<td>4</td>
<td>9</td>
<td>IA</td>
</tr>
<tr>
<td>Zinc</td>
<td>28</td>
<td>65.39</td>
<td>5</td>
<td>1</td>
<td>IA</td>
</tr>
<tr>
<td>Antimony</td>
<td>45</td>
<td>121.76</td>
<td>6</td>
<td>13</td>
<td>VA</td>
</tr>
<tr>
<td>Indium</td>
<td>49</td>
<td>114.82</td>
<td>7</td>
<td>3</td>
<td>IA</td>
</tr>
<tr>
<td>Iridium</td>
<td>77</td>
<td>192.22</td>
<td>9</td>
<td>9</td>
<td>VB</td>
</tr>
<tr>
<td>Gold</td>
<td>79</td>
<td>197.22</td>
<td>10</td>
<td>10</td>
<td>IB</td>
</tr>
<tr>
<td>Mercury</td>
<td>80</td>
<td>200.59</td>
<td>10</td>
<td>11</td>
<td>IB</td>
</tr>
<tr>
<td>Thallium</td>
<td>81</td>
<td>204.38</td>
<td>10</td>
<td>12</td>
<td>IB</td>
</tr>
<tr>
<td>Lead</td>
<td>82</td>
<td>207.20</td>
<td>10</td>
<td>13</td>
<td>IB</td>
</tr>
<tr>
<td>Bismuth</td>
<td>83</td>
<td>208.98</td>
<td>10</td>
<td>14</td>
<td>IB</td>
</tr>
<tr>
<td>Polonium</td>
<td>84</td>
<td>209.00</td>
<td>10</td>
<td>15</td>
<td>IB</td>
</tr>
</tbody>
</table>

Lanthanide series
- Lanthanum
- Cerium
- Praseodymium
- Neodymium
- Promethium
- Samarium
- Europium
- Gadolinium
- Terbium
- Dysprosium
- Holmium
- Erbium
- Thulium
- Ytterbium

Actinide series
- Actinium
- Thorium
- Protactinium
- Uranium
- Neptunium
- Plutonium
- Americium
- Curium
- Berkelium
- Californium
- Lawrencium
- Fermium
- Mendelevium
- Nobelium

Names and symbols are approximate as their exact values may vary.
Some potentially useful formulas

$$F = \frac{G M_1 M_2}{r^2} \quad \left[\text{m, and } M_2 \text{ in kg} \right] \Rightarrow G = 6.7 \times 10^{-11}$$

$$F = \frac{k q_1 q_2}{r^2} \quad \left[q_1 , q_2 \text{ in Coulombs} \right] \Rightarrow k = 9 \times 10^9$$

$$F = ma$$

(distance) = (speed) (time)

$$v = \frac{\Delta x}{\Delta t}$$

$$a = \frac{\Delta v}{\Delta t}$$

Work = force x distance

Momentum = $$p = mv$$

$$\Delta x' = \gamma \Delta x$$, $$\Delta x$$ longest in proper frame

$$\Delta t' = \gamma \Delta t$$, $$\Delta t$$ shortest in proper frame

$$\gamma = \frac{1}{\sqrt{1 - (\frac{v}{c})^2}}$$

$$\Delta x \Delta p \geq \frac{h}{2\pi}$$

$$\Delta E \Delta t \geq \frac{h}{2\pi}$$

$$\frac{\Delta N}{\Delta t} = \lambda N \quad \text{t} \frac{1}{2} = 0.634 / \lambda$$

1 Joule = 1.6×10^{-19} eV

Speed of Sound = 330 m/s

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.6 \times 10^{-34} \text{ J s}$$

or

$$4.5 \times 10^{-15} \text{ eV s}$$

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

$$v = \frac{\lambda}{\nu}$$

$$v = \frac{1}{T} \quad (T = \text{period})$$

$$E = \hbar \nu$$