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EXPERIMENT 4 
Moment of Inertia & Oscillations 
0. Pre-Laboratory Work [2 pts] 
 
1.   

a) In Section 3.1, describe briefly the steps you take to make sure your apparatus setup is 
done correctly and the timer is working properly. [0.5 pts] 
 
 
 
 

b) Below is a diagram of how the rotary table in Section 
2.1 oscillates. Which number of the picture 
corresponds to when the photogate timer will 
measure one period of oscillation. Why? [0.5 pts] 

 
 
 
 
 
 
 
2. In the second section of the lab you will observe the oscillations of a spring loaded with a 

specific mass. However, you may notice that the spring will oscillate even when there is no 
mass attached (𝑀 = 0) in section 2.2.  
a) What is one reason that this can happen? [0.5 pts] 

 
 
 
 
 
 

b) What is one effect that this could have on the experiment? [0.5 pts] 
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EXPERIMENT 4 
 

Moment of Inertia & Oscillations 
 
 
1. Purpose 
 
In the first part of this laboratory exercise you will measure the moment of inertia of three different 
objects about a specified rotational axis and verify the parallel axis theorem. In the second part 
you will measure the oscillations of a mass on a spring to investigate Hooke’s Law. 
 
2. Introduction 
 
2.1 Moment of Inertia and Parallel-Axis Theorem 
 
Consider a rigid body rotating about an axis, as in Figure 4.1. If the angular velocity is 𝜔, each 
point in the body will move with linear speed 𝑟𝜔 where 𝑟 is the perpendicular distance of the point 
from the rotational axis. The total angular momentum 𝐿 of the rotating body points along the axis 
and is equal in magnitude to, 

𝐿 = ' 𝑟𝑣𝑑𝑚
+,-.

= ' 𝑟/𝜔𝑑𝑚
+,-.

= 𝜔 ' 𝑟/𝑑𝑚
+,-.

= 𝐼𝜔, (4.1) 

where 

𝐼 = '𝑟/𝑑𝑚, (4.2) 

is called the moment of inertia of the body about the axis of rotation. In the MKS system of units, 
the unit of 𝐼 is 𝑘𝑔𝑚/. If the axis of rotation is chosen to be through the center of mass of the object, 
then the moment of inertia about the center of mass axis is called 𝐼:; . For example, 𝐼:; =
<
/
𝑀𝑅/	for a solid disk of mass 𝑀 and radius 𝑅 (see Figure 4.1). Table 4. 1 gives examples of 𝐼:;  

for some objects with different mass distributions.  

 
The parallel-axis theorem relates the moment of inertia about an axis through the center of mass 
𝐼:;  to the moment of inertia 𝐼 about a parallel axis through some other point. The theorem states 
that, 

𝐼 = 𝐼:; + 𝑀𝑑/, (4.3) 
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where 𝑀 is the total mass of the body and 𝑑 is the perpendicular distance between the two axes. 
This implies 𝐼:;  is always less than 𝐼 about any other parallel axis. 
 

Object Rotational Axis 𝐼:;  

Thin Ring Symmetry Axis 𝑀𝑅/ 

Thick Ring Symmetry Axis 
1
2𝑀

(𝑅</ + 𝑅//) 

Solid Disk Symmetry Axis 
1
2𝑀𝑅

/ 

Thin Spherical Shell About a Diameter 
2
3𝑀𝑅

/ 

Solid Sphere About a Diameter 
2
5𝑀𝑅

/ 

Table 4.1 

 
When working with rotational motion for rigid bodies, 
many of the equations are similar to the equations of 
motion for linear motion. The angular velocity is used 
instead of linear velocity, and the moment of inertia is 
used instead of the mass. Table 4.2 summarizes the 
correspondence between linear and rotational kinematics 
for rigid bodies. 

 
 
 
 
 

Table 4.2 

 
 

Linear Kinematics Rotational Kinematics 

Velocity = 𝑣 Angular Velocity = 𝜔 

Mass = 𝑀 Moment of Inertia = 𝐼 

Momentum = 𝑝 = 𝑀𝑣 Angular Momentum = 𝐿 = 𝐼𝜔 

Kinetic Energy = 𝐾 = <
/
𝑀𝑣/ Kinetic Energy= 𝐾 = <

/
𝑀𝜔/ 

Spring
Table

Figure 4.1 
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The apparatus in this experiment in Figure 4.2 consists of a rotary table on which you can mount 
an object in order to measure its moment of inertia. A torsion spring restricts the motion of the 
table and provides a restoring torque. If the table is rotated by an angle 𝜃 then the torque acting on 
it will be equal to 

𝜏 = −𝐾𝜃, (4.4) 
where 𝐾 is the “force constant” for a torsional spring, which must be measured. If the sum of the 
moment of inertia of the table 𝐼GHIJK  and that of the mounted object 𝐼 is equal to 𝐼 + 𝐼GHIJK , the 
table will perform a rotary oscillation with the frequency, 

𝜔 = L
𝐾

𝐼 + 𝐼GHIJK
, (4.5) 

which corresponds to a period of oscillation,  

𝑇 = 2𝜋L
𝐼 + 𝐼GHIJK

𝐾 , (4.6) 

Note that there are two unknown parameters of the apparatus: 𝐼GHIJK  and 𝐾. To determine these 
parameters, you need to measure the period 𝑇GHIJK  of the table alone and the period 𝑇GHIJKPQIRKST 
of the table with an object of a known moment of inertia 𝐼U placed on the table. From Equation 
4.6, one finds that 

𝑇GHIJK = 2𝜋L
𝐼GHIJK
𝐾 , (4.7) 

𝑇GHIJKPQIRKST = 2𝜋L
𝐼U + 𝐼GHIJK

𝐾 , (4.8) 

Using the technique of solving sets of equations, you square both equations and add them to obtain, 

X𝑇GHIJKPQIRKSTY
/
+ (𝑇GHIJK)/ = 4𝜋/

2𝐼GHIJK + 𝐼U
𝐾 , (4.9) 

and by squaring them and subtracting one from the other you get, 

X𝑇GHIJKPQIRKSTY
/
− (𝑇GHIJK)/ = 4𝜋/

𝐼U
𝐾 ,

(4.10) 
This allows you to solve for one of the unknown constants, 

𝐾 = 4𝜋/
𝐼U

X𝑇GHIJKPQIRKSTY
/
− (𝑇GHIJK)/

, (4.11) 

The other unknown, 𝐼GHIJK , can be obtained first by dividing Equation 4.9 by Equation 4.10 to get 
the following, 

X𝑇GHIJKPQIRKSTY
/
+ (𝑇GHIJK)/

X𝑇GHIJKPQIRKSTY
/
− (𝑇GHIJK)/

=
2𝐼GHIJK
𝐼U

+ 1, (4.12) 

and then simplifying and solving for , 

𝐼GHIJK = 𝐼U
(𝑇GHIJK)/

X𝑇GHIJKPQIRKSTY
/
− (𝑇GHIJK)/

, (4.13) 

By these means the unknown constants of the table, 𝐼GHIJK  and 𝐾, can be determined if a body of 
known moment of inertia is available. Now knowing the values of 𝐼GHIJK  and 𝐾, you can find the 

TableI
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moment of inertia 𝐼[ of an unknown object on the table by using the equation below, 

𝐼[ = 𝐼GHIJK \]
𝑇GHIJKP[
𝑇GHIJK

^
/

− 1_ , (4.14) 

where 𝑇GHIJKP[  is the measured period of the table with the unknown object. 
 
2.2 Hooke’s Law and Spiral Spring Oscillations 
 
It is often assumed that a long spiral spring obeys Hooke's law if it is not stretched too far. If the 
spring is hung vertically from a fixed support and a mass is attached to its free end, the mass can 
then oscillate vertically in a simple harmonic motion pattern by stretching and releasing it. The 
period of an oscillation is the time it takes the attached mass to return to its initial starting position. 
The period 𝑇 depends upon the attached mass 𝑀, the spring force constant 𝑘, and the spring mass 
𝑚. The period is given by, 

𝑇 = 2𝜋L
𝑀 + 𝑏𝑚

𝑘 , (4.15) 

where 𝑏 is the dimensionless and is called the spring mass coefficient. You will calculate it in the 
lab and compare your measurement to the theoretical value of 𝑏 = 1/3. During the lab, you will 
measure 𝑇 for different values of 𝑀. To make it easy to estimate 𝑘 knowing only 𝑇 and 𝑀, we can 
write Equation 4.15 in the following form: 

𝑇/ =
4𝜋/

𝑘 𝑀 +
4𝜋/

𝑘 𝑏𝑚, (4.16) 

We see then that if we were to make a plot with 𝑇/ along the y-axis and 𝑀 along the x-axis 
Equation 4.16 is in slope-intercept form: 𝑦 = (𝑠𝑙𝑜𝑝𝑒)𝑥 + (𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡). In question 10 you 
will make just such a plot, and you’ll see if your data has the expected linear form. 
 
 
3. Laboratory Work 
 
3.1 Moment of Inertia and Parallel-Axis Theorem 
 
Procedure 

1. After the table reaches its equilibrium position, make sure that the table 
top is level. Place a level on it and adjust the table apparatus’ feet if 
necessary. 

2. Set the photogate timer to pendulum mode and arrange the photogate 
so that the table’s trigger (see Fig. 4.3) will pass through the photogate 
when the table rotates. 

3. Wind the table either clockwise or counter-clockwise such that the 
trigger does not pass the timer while winding. Stop when the table hits 
the block and can’t be turned any further. 

4. Release the table. Count the number of times that the trigger passes 
through the photogate before the timer stops counting. It should be three 
passes before the timer stops. The displayed time is the period of one oscillation. 

5. Measure the mass, and inner and outer radii of the brass ring. Record these values in the 

Timer 
Trigger 

Table 

Top View 

Figure 4.2 
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Section 4.1. 
6. Measure the period of one oscillation 𝑇GHIJK  of the table alone five (5) times. Record the 

data in Table 4.3. Don’t forget to reset the timer after each trial. 
7. After making sure the brass ring is mounted down with screws and centered on the table’s 

axis of rotation, measure the period of one oscillation 𝑇GHIJKPlmno of the table/ring 
combination five (5) times. Record the data in Table 4.3. 

8. Measure the mass and radius of the solid disk. Record the data in Section 4.1. 
9. To measure the period of one oscillation for the table/disk 

combination, place and screw down the solid disk at one of five 
different equally spaced positions along the table radius at a distance 
𝑑 from the table’s axis of rotation (see Figure 4.4). One of the 
positions must be the center (𝑑 = 0.000m). Recommended positions 
are 0.000m, 0.015m, 0.030m, 0.045m and 0.060m (i.e. the spacing of 
the holes in the table). 

10. Measure the periods oscillation at those five different positions. 
Measure each period five times. Record your data in Table 4.4. 

 
3.2 Hooke’s Law and Spiral Spring Oscillations 
 
Introduction 
According to Hooke’s law, the extension of a spring should be proportional to the force exerted 
by the spring on an attached mass- 𝐹 = −𝑘𝑥, where 𝐹 is the force exerted by the spring, 𝑥 is the 
extension of the spring, and 𝑘 is the force constant of the spring. You will test the validity of 
Hooke’s law by making measurements of spring extension as increasingly greater amounts of mass 
are attached. Then, you will measure the oscillation period of several different hanging masses to 
measure the spring mass coefficient needed to take into account the spring’s own mass 𝑚. 
 
Procedure 

1. Weigh the Slinky Jr.™ and mass holder to determine the mass of the “spring” system, 𝑚. 
Record it in Section 4.2. 

2. Mount the spring by clipping one end of it to the flat metal piece mounted to the stand. 
3. For each of the attached masses, 𝑀, in Table 4.6, calculate the force of gravity acting on 

those masses, 𝐹 = 𝑀𝑔 (where 𝑔 = 9.8 m/s2). 
4. Let the spring come to equilibrium. If possible, move the ruler/spring vertically so that the 

ruler’s zero is at the bottom of the spring (or the bottom of the mass holder, if you prefer). 
Record the position of the spring’s bottom end (i.e. its equilibrium length) on the ruler. 

5. Measure the change in the extension of the spring 𝑥 as you attach different amounts of 
mass to the end of the spring. Keep in mind that the “extension of the spring” is the length 
of spring extended beyond the spring’s equilibrium length. Use masses of 5g, 10g, 15g, 
20g and 25g. Attach the masses gently. Record the data on Table 4.6. 

6. Measure the period of ten oscillations for the same five different attached masses. Set the 
spring and mass into motion by stretching the mass gently by about 15cm to 20cm and 
then releasing it. While in motion, the mass should not touch the floor or anything else. If 
you pulled the mass down, then one oscillation occurs every time the mass returns to its 
initial position (i.e. the lowest part of its oscillation). Divide the total time by 10 to get 
the average period of one oscillation. Record the one-oscillation periods on Table 4.6. 

Figure 4.3 

Table 

Disk 

Top View 
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Last Revised on August 21, 2019 
 

EXPERIMENT 4 
 

Moment of Inertia & Oscillations 
 
 
4. Post-Laboratory Work [20pts] 
 
4.1 Moment of Inertia and Parallel-Axis Theorem [10 pts] 
 
Mass of Ring (kg) = __________ 
Ring’s Inner Radius (m) = __________ 
Ring’s Outer Radius (m) = __________ 
 
 
 
 
 
 
 
Mass of Solid Disk (kg) = __________ 
Radius of Solid Disk (m) = __________ 
 

Distance (m) 𝑑[q =  0.000m   𝑑[r =________ 𝑑[s =________ 𝑑[t =________ 𝑑[u =________ 

Trial 𝑇[q 𝑇[r 𝑇[s 𝑇[t 𝑇[u 

1      

2      

3      

4      

5      

Average (sec)      

Table 4.4 

 
 
 
 
 

Trial 𝑇GHIJK  𝑇GHIJKPlmno 

1   

2   

3   

4   

5   

Average   

Table 4.3 
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1. Calculate all the quantities in Table 4.5. As for the values of the measured periods, use the 
average values from Tables 4.3 and 4.4. Write the formula for each quantity except from  to 

 and the Error. Remember to include units! You do not have to show your calculations. [3pts] 
Equation: Theoretical Value of the Moment of 

Inertia of the Brass Ring (Table 4.1) 
Note that we would consider it a thick 
ring. Also a heavy ring, incidentally. 𝐼lmno = 

Equation: Spring Constant of the Table (Equation 
4.11, where 𝐼U = 𝐼lmno and 
𝑇GHIJKPQIRKST = 𝑇GHIJKPlmno) 

𝐾 = 

Equation: Calculated Moment of Inertia of the 
Table (Equation 4.13, where  
𝐼U = 𝐼lmno) 

𝐼GHIJK = 

Equation: Theoretical Value of the Moment of 
Inertia of the Brass Disk (Table 4.1) 

𝐼vmwx = 

Equation: Calculated Moment of Inertia when the 
Brass Disk is placed at 𝑑< (Equation 
4.14, where 𝑇GHIJKP[ = 𝑇[q) 

𝐼[q =  

𝐼[r = Calculated Moment of Inertia when the 
Brass Disk is placed at 𝑑/ 

𝐼[s = Calculated Moment of Inertia when the 
Brass Disk is placed at 𝑑y 

𝐼[t = Calculated Moment of Inertia when the 
Brass Disk is placed at 𝑑z 

𝐼[u = Calculated Moment of Inertia when the 
Brass Disk is placed at 𝑑{ 

𝐸𝑟𝑟𝑜𝑟 = |𝐼vmwx − 𝐼[<| = Calculated Error in Moment of Inertia of 
the Solid Disk 

Table 4.5 

 

2x
I

5x
I
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2. On the graph below,  
a) Plot the moment of inertia of the solid disk (𝐼[~) on the y-axis vs. the square of the distance 

between the center of the table and the center of the solid disk (𝑑[~
/ ) on the x-axis. [1.25pts] 

b) Include error bars on each data point. Each error bar should have the same length: 
|𝐼vmwx − 𝐼[<| from Table 4.5. [0.25 pts] 

c) Add a title to the graph, label the axes, and make sure you include units! [0.5pts] 
 

 
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         

 
3.   

a) Draw a best-fit straight line for your data (it need not go through the origin). [0.5pts]  
b) Find the y-intercept value of your best-fit line and circle it on the graph: [0.25pts] 

𝑏K[� = 𝑦mnTK�SK�T = 
 

c) Circle two points on your best fit-line: (𝑥<, 𝑦<) and (𝑥/, 𝑦/). Then, calculate the slope 
(don’t forget your units) [0.25pts]: 

𝑚K[� = 𝑠𝑙𝑜𝑝𝑒 =
∆𝑦
∆𝑥 =

𝑦/ − 𝑦<
𝑥/ − 𝑥<

= 
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4. If you take the parallel-axis theorem, 𝐼 = 𝑀𝑑/+𝐼:; , and you plot 𝐼 vs. 𝑑/ (y vs. x), the data 
should be linear. Given that the equation for a line is 𝑦 = 𝑚𝑥 + 𝑏 where 𝑚 is the slope and 𝑏 
is the y-intercept, what variables in parallel-axis theorem correspond to 𝑚 and 𝑏? [1 pt] 
𝑚T�K,�. = 𝑠𝑙𝑜𝑝𝑒	 = 
 
𝑏T�K,�. = 𝑦mnTK�SK�T = 

 
5. Using your answers to questions 3 and 4, how much do your measured values for the slope and 

y-intercept differ from the theoretical values? Remember to include units! [2 pts] 
�𝑚T�K,�. − 𝑚K[�� = 
 
�𝑏T�K,�. − 𝑏K[�� = 
 
 

6. Name two sources of experimental error. Give a reason as to how each source of error would 
affect your values for the moment of inertia. [1 pt] 
First error: 
 
 
 
 
 
 
Second error: 
 
 
 
 
 

 
4.2 Hooke’s Law and Spiral Spring Oscillations [10 pts] 
 
𝑚 = mass of spring (kg) = __________ 
 
𝑀 = attached mass 

(kg) 𝐹𝑜𝑟𝑐𝑒 = 𝑀𝑔 (N) Extension (m) Period (sec) Period Squared (sec2) 

0.005     

0.010     

0.015     

0.020     

0.025     

Table 4.6 



Name___________________________________  Date: ________________   Course number: _________________   
MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START 
 

 TA or TI Signature ___________________________________     11 of 13 
 

7.  
a) Plot Force of gravity versus Extension (y vs. x) using the data from Table 4.6. [1 pt]  
b) Include title, axis labels and units. [0.5 pts] 
c) Draw a best-fit straight line through the data points. [0.5 pts] 

 
 

                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         

 
 
8. Based on the best-fit straight line, does your data agree with Hooke’s Law? Explain why. [1pt] 
 
 
 
 
 
 
 
9. As in Question 3, calculate the slope of the best-fit straight line. Circle the two points on the 

line that you will use to get the slope. Find the spring constant, 𝑘, and remember units! [1pt] 

𝑘�,,xK = 𝑠𝑙𝑜𝑝𝑒 =
∆𝑦
∆𝑥 =

𝑦/ − 𝑦<
𝑥/ − 𝑥<

= 
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10. Looking at Equation 4.16, if we were to plot 𝑇/ along the y-axis and 𝑀 along the x-axis:  
a) What would be an equation for the theoretical value of the slope? Remember the equation 

for a line: 𝑦 = (𝑠𝑙𝑜𝑝𝑒)𝑥 + (𝑦mnTK�SK�T) [0.5pts] 
𝑠𝑙𝑜𝑝𝑒T�K,�. = 
 
 
 

b) What would be an equation for the theoretical value of the y-intercept? [0.5pts] 
𝑦mnTK�SK�TT�K,�. = 

 
 
 
11. Using your data for the period squared and the attached mass from Table 4.6: 

a) Plot the period squared versus the attached mass, i.e. 𝑇/ vs. 𝑀 (y vs. x). [0.5pts] 
b) Draw a best-fit straight line through the data. [0.25pts] 
c) Include a title, axes labels and units. [0.25pts] 
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12. Calculate the slope of the best-fit straight line. Circle the two points on the line used in the 
calculation. Setting the experimental value of the slope equal to the slope equation found in 
Question 10(a), find the spring constant 𝑘. [1pt] 
𝑠𝑙𝑜𝑝𝑒K[� =

𝑦/ − 𝑦<
𝑥/ − 𝑥<

= 𝑠𝑙𝑜𝑝𝑒T�K,�. 

 
𝑘�H�� = 
 

 
 
13. Find and circle the y-intercept value of the best-fit straight line. Like Question 12, find the 

spring mass coefficient 𝑏 by plugging the numeric value of the experimental y-intercept into 
the equation found in Question 10(b). Use the 𝑘�H�� value calculated in Question 12. [1pt] 
𝑦mnTK�SK�TK[� = 𝑦mnTK�SK�TT�K,�.  

 
 
 
 
 
 
 
 
14. Let’s say that if the effective spring mass, 𝑏𝑚, is less than 10% of the smallest attached mass, 

𝑀 = 0.005 kg (a seemingly random percentage, I admit), then the spring mass is negligible. 
Based on your value for 𝑏 found in Question 13, is I�

;
≤ 0.1 (i.e. is the spring’s mass 

negligible)? [1pt] 
 
 
 
 
 
 
 
15. For the last question, we’ll check whether the spring constants, 𝑘, calculated in Questions 9 

and 12 are comparable. 
a) First, find the difference between the two 𝑘 values, remember to include units! [0.5pts] 

|𝑘�,,xK − 𝑘�H��| = 
 

b)  Like in question 14, let’s arbitrarily say that these 𝑘 measurements are consistent if they 
differ by less than 10% of the smaller value. Is |x������x����|

x�������
≤ 0.1? [0.5pts] 

 


