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Chapter 1

The Variational Principle

Many problems in physics involve �nding the minima (more generally extrema)
of functions. For example, the equilibrium positions of a static system are the
extrema of its potential energy: stable equilibria correspond to local minima. It
is a surprise that even dynamical systems, whose positions depend on time, can
be understood in terms of extremizing a quantity that depends on the paths:
the action. In fact, all the fundamental physical laws of classical physics follow
from such variational principles. There is even a generalization to quantum
mechanics, based on averaging over paths where the paths of extremal action
make the largst contribution.

In essence, the calculus of variations is the di�erential calculus of functions
that depend on an in�nite numer of variables. For example, suppose we want
to �nd the shortest curve connecting two di�erent points on the plane. Such a
curve can be thought of as a function (x(t), y(t)) of some parameter (like time).
It must satisfy the boundary conditions

x(t1) = x1, y(t1) = y1

x(t2) = x2, y(t2) = y2

where the initial and �nal points are given. The length is

S[x, y] =

ˆ t2

t1

√
ẋ2 + ẏ2dt

This is a function of an in�nite number of points because we can make
some small changes �x(t), �y(t) at each time t independently. We can de�ne a
di�erential, the in�nitesimal change of the length under such a change:

�S =

ˆ t2

t1

ẋ�ẋ+ ẏ�ẏ√
ẋ2 + ẏ2

dt

Generalizing the idea from the calculus of several variables, we expect that
at the extremum, this quantity will vanish for any �x, �y. This condition leads
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CHAPTER 1. THE VARIATIONAL PRINCIPLE 6

to a di�erential equation whose solution turns out to be (no surprise) a straight-
line.There are two key ideas here. First of all the variation of the time derivative
is the time derivative of the variation:

�ẋ =
d

dt
�x

This is essenially a postulate on the nature of the variation. (It can be further
justi�ed if you want.) The second idea is an integration by parts, remembering
that the variation must vanish at the boundary ( we are not changing the initial
and �nal point.)

�x(t1) = �x(t2) = 0 = �y(t1) = �y(t2)

Now,

ẋ√
ẋ2 + ẏ2

d

dt
�x =

d

dt

[
ẋ√

ẋ2 + ẏ2
�x

]
− d

dt

[
ẋ√

ẋ2 + ẏ2

]
�x

and similarly with �y. Then

�S =

ˆ t2

t1

d

dt

[
ẋ√

ẋ2 + ẏ2
�x+

ẏ√
ẋ2 + ẏ2

�y

]
dt

−
ˆ t2

t1

{
d

dt

[
ẋ√

ẋ2 + ẏ2

]
�x+

d

dt

[
ẏ√

ẋ2 + ẏ2

]
�y

}
dt

The �rst term is a total derivative and becomes[
ẋ√

ẋ2 + ẏ2
�x+

ẏ√
ẋ2 + ẏ2

�y

]t2
t1

= 0

because �x and �y both vanish at the boundary. Thus

�S = −
ˆ t2

t1

{
d

dt

[
ẋ√

ẋ2 + ẏ2

]
�x+

d

dt

[
ẏ√

ẋ2 + ẏ2

]
�y

}
dt

In order for this to vanish for any variation, we must have

d

dt

[
ẋ√

ẋ2 + ẏ2

]
= 0 =

d

dt

[
ẏ√

ẋ2 + ẏ2

]
That is because we can choose a variation that is only non-zero in some tiny

( as small you want) neighborhood of a particular value of t. Then the quantity
multiplying it must vanish, independently at each value of t. These di�erential
equations simply say that the vector (ẋ, ẏ)have constant direction:( ẋ√

ẋ2+ẏ2
, ẏ√

ẋ2+ẏ2
)

is just the unit vector along the tangent. So the solution is a straightline. Why
did we do all this work to prove an intuitively obvious fact? For, sometimes
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intuitively obvious facts are wrong. Also, this method generalizes to situations
where the answer is not at all obvious: what is the curve of shortest length
between two points that lie entirely on the surface of a sphere?

1.1 Euler-Lagrange equations

In many problems, we will have to �nd the extremum of a quantity

S[q] =

ˆ t2

t1

L[q, q̇, t]dt

where qi(t) are a set of functions of some parameter t. We will call them
position and time respectively, although the actual physical meaning may be
something else in a particular case. The quantity S[q] whose extremum we want
to �nd is called the action. It depends on an in�nite number of independent
variables, the values of q at various times t. It is the integral of a function of
position and velocity at a given time, integrated on some interval. It can also
depend explicitly on time; if it does not, there are some special tricks we can
use to simplify the solution of the problem.

As before we note that at an extremum S must be unchanged under small
variations of q. Also we assume the identity

�q̇i =
d

dt
�qi

We can now see that

�S =

ˆ t2

t1

∑
i

[
�q̇i

∂L

∂q̇i
+ �qi

∂L

∂qi

]
dt

=

ˆ t2

t1

∑
i

[
d�qi

dt

∂L

∂q̇i
+ �qi

∂L

∂qi

]
dt

We then do an integration by parts,

=

ˆ t2

t1

∑
i

d

dt

[
�qi

∂L

∂q̇i

]
dt

+

ˆ t2

t1

∑
i

[
− d

dt

∂L

∂q̇i
+
∂L

∂qi

]
�qi dt

Again in physical appications, the boundary values of q at times t1 and t2
are given. So

�qi(t1) = 0 = �qi(t2)

Thus
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ˆ t2

t1

∑
i

d

dt

[
�qi

∂L

∂q̇i

]
dt =

[
�qi

∂L

∂q̇i

]t2
t1

= 0

and at an extremum,

ˆ t2

t1

∑
i

[
− d

dt

∂L

∂q̇i
+
∂L

∂qi

]
�qi dt = 0

Since these have to be true for all variations, we get the di�erential equations

− d

dt

∂L

∂q̇i
+
∂L

∂qi
= 0.

This ancient argument is due to Euler and Lagrange, in the pioneering gen-
eration that �gured out the consequences of Newton's Laws. The calculation we
did earlier is a special case. As an exercise, rederive the equations for minimizing
the length of a curve using the Euler-Lagrange equations.

Exercise 1. Find the solution to the Euler Lagrange equations that minimize

S[q] =
1

2

ˆ a

0

q̇2dt

subject to the boundary conditions

q(0) = q0, q(a) = q1

1.2 The Varational Principle of Mechanics

Newton's equation of motion of a particle of mass m and position q moving on
the line, under a potential V (q) is

mq̈ = −∂V
∂q

There is a quantity L(q, q̇)such that the Euler-Lagrange equation for mini-
mizing S =

´
L[q, q̇]dt are just these equations.

We can write this equation as

d

dt
[mq̇] +

∂V

∂q
= 0.

So if we had

mq̇ =
∂L

∂q̇
,

∂L

∂q
= −∂V

∂q

we would have the right equations. A choice is
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L =
1

2
mq̇2 − V (q)

This quantity is called the Lagrangian. Note that it is the di�erence of
kinetic and potential energies, and not the sum.

More generally, the co-ordinate q may be replaced by a collection of numbers
qi, i = 1, ⋅ ⋅ ⋅n which together describe the instantaneous position of a system
of particles. The number n of such variables needed is called the number of
degrees of freedom. Part of the advantage of the Lagrangian formalism over the
older Newtonian one is that it allows even curvilinear co-ordinates: all you have
to know arethe kinetic energy and potential energy in these co-ordinates. To be
fair, the Newtonian formalism is more general in another direction, as it allows
forces that are not conservative (a system can lose energy).

Example 2. The kinetic energy of a particle in spherical polar co-ordinates is

1

2
m
[
ṙ2 + r2�̇2 + r2 sin2 ��̇2

]
.

Thus the Lagrangian of the Kepler problem is

L =
1

2
m
[
ṙ2 + r2�̇2 + r2 sin2 ��̇2

]
+
GMm

r



Chapter 2

Conservation Laws

2.1 Generalized Momenta

Recall that if q is a Cartesian co-ordinate,

p =
∂L

∂q̇

is the momentum in that direction. More generally, for any co-ordinate qi

the quantity

pi =
∂L

∂q̇i

is called the generalized momentum conjugate to qi. For example, in
spherical polar co-ordinates the momentum conjugate to � is

p� = mr2�̇.

You can see that this has the physical meaning of angular momentum around
the third axis.

2.2 Conservation Laws

This de�nition of generalized momentum is motivated in part by a direct con-
sequence of it: if L happens to be independent of a particular co-ordinate qi

(but might depend on q̇i), then the momentum conjugate to it is independent
of time: is conserved:

∂L

∂qi
= 0 =⇒ d

dt

[
∂L

∂q̇i

]
= 0.

10
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For example, p� is a conserved quantity in the Kepler problem. This kind of
information is precious in solving a mechanics problem; so the Lagrangian for-
malism which identi�es such conserved quantities is very convenient to actually
solve for the equations of a system.

2.3 Conservation of Energy

L can have a time dependence through its dependence of q, q̇ as well as explicitly.
The total time derivative is

dL

dt
=
∑
i

q̇i
∂L

∂qi
+
∑
i

q̈i
∂L

∂q̇i
+
∂L

∂t

The E-L equations imply

d

dt

[∑
i

piq̇
i − L

]
= −∂L

∂t
, pi =

∂L

∂q̇i

In particular, if L has no explicit time dependence, the quantity called the
hamiltonian,

H =
∑
i

piq̇
i − L

is conserved.

∂L

∂t
= 0 =⇒ dH

dt
= 0.

What is its physical meaning? Consider the example of a particle in a
potential

L =
1

2
mq̇2 − V (q)

Since the kinetic energy T is a quadratic function of q̇, and V is independent
of q̇,

pq̇ = q̇
∂T

∂q̇
= 2T

Thus

H = 2T − (T − V ) = T + V.

Thus the hamiltonian, in this case, is the total energy.
More generally, if the kinetic energy is quadratic in the generalized velocities

q̇i (which is true very often) and if the potential energy is independent of veloc-
ities (also true often), the hamiltonian is the same as energy. There are some
cases where the hamiltonian and energy are not the same though: for example,
when we view a system in a reference frame that is not inertial. But these are
unusual situations.
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Figure 2.1:

2.4 Minimal Surface of Revolution

Although the main use of the variational calculus is in mechanics, it can also
be used to solve some interesting geometric problems. A minimal surface is a
surface whose area is unchanged under small changes of its shape. You might
know that for a given volume, the sphere has minimal area. Another interesting
question in geometry is to ask for a surface of minimal area which has a given
curve (or disconnected set of curves) as boundary. The �rst such problem was
solved by Euler. What is the surface of revolution of minimal area, with given
radii at the two ends? Recall that a surface of revolution is what you get by
taking some curve y(x) and rotating it around the x− axis. The cross-section at
x is a circle of radius y(x) , so we assume that y(x) > 0. The boundary values
y(x1) = y1 and y(x2) = y2 are given. We can, without loss of generality, assume
that x2 > x1 and y2 > y1.What is the value of the radius y(x)in between x1and
x2 that will minimize the area of this surface?

The area of a thin slice between x and x + dx is 2�y(x)ds where ds =√
1 + y′2dx is the arc-length of the cross-section.Thus the quantity to be mini-

mized is

S =

ˆ x2

x1

y(x)
√

1 + y′2dx

This is the area divided by 2�.
We can derive the Euler Lagrange equation as before: y is analogous to q
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and x is analogous to t. But it is smarter to exploit the fact that the integrand
is independent of x: there is a conserved quantity

H = y′
∂L

∂y′
− L. L = y(x)

√
1 + y′2

That is

H = y
y′2√

1 + y′2
− y
√

1 + y′2

H
√

1 + y′2 = −y

y′ =

√
y2

H2
− 1

ˆ y

y1

dy√
y2

H2 − 1
= x− x1

The substitution

y = H cosh �

evalutes the integral:

H[� − �1] = x− x1

� =
x− x1

H
+ �1

y = H cosh

[
x− x1

H
+ �1

]
The constants of integration are �xed by the boundary conditions

y1 = H cosh �1

y2 = H cosh

[
x2 − x1

H
+ �1

]
The curve y = H cosh

[
x
H + constant

]
is called a catenary; the surface you

get by revolving it around the x-axis is the catenoid. If we keep the radii �xed
and move the boundaries far apart along the x−axis, at some critical distance,
the surface will cease to be of minimal area. The minimal area is given by the
disconnected union of two disks with the circles as boundaries. If we imagine
a soap bubble bounded by two circles that are moved apart, at some distance
it will break into two �at circles. Can you �nd the critical distance in terms of
the bounding radius, assuming for simplicity that y1 = y2?



Chapter 3

The Simple Pendulum

Consider a mass g suspended from a �xed point by a rigid rod of length l. Also,
it is only allowed to move in a �xed vertical plane.

The angle � from the lowest point on its orbit serves as a position co-ordinate.
The kinetic energy is

T =
1

2
ml2�̇2

and the potential energy is

V (�) = mgl(1− cos �).

Thus

T − V = ml2
[

1

2
�̇2 − g

l
(1− cos �)

]
The overall constant will not matter to the equations of motion. So we can

choose as Lagrangian

Figure 3.1:

Θ

l

14
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L =
1

2
�̇2 − g

l
(1− cos �)

This leads to the equation of motion

�̈ +
g

l
sin � = 0,

For small angles � << � this is the equation for a harmonic oscillator with
angular frequency

! =

√
g

l
.

But for large amplitudes of oscillation the answer is quite di�erent. To simplify
calculations let us choose a unit of time such that ,g = l; i.e., such that ! = 1.
Then

L =
1

2
�̇2 − (1− cos �)

We can make progress in solving this system using the conservation of energy

H =
�̇2

2
+ [1− cos �].

The key is to understand the critical points of the potential. The potential
energy has a minimum at � = 0 and a maximum at � = �. The latter corre-
sponds to an unstable equilibrium point: the pendulum standing on its head.
If the energy is less than this maximum value,

H < 2

the pendulum oscillates back and forth around its equilibrium point. At the
maximum angle, �̇ = 0 so that it is given by a transcendental equation

1− cos �0 = H

The motion is periodic, with a period T that depends on energy.That is, we
have

sin �(t+ T ) = sin �(t).

3.1 Algebraic Formulation

It will be useful to use a variable which takes some simple value at the maximum
de�ection; also we would like it to be periodic function of the angle. The
condition for maximum de�ection can be written√

2

H
sin

�0

2
= ±1
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This suggests that we use the variable

x =

√
2

H
sin

�

2

so that at maximum de�ection, we simply have x = ±1. De�ne also a
quantity that parametrizes the energy

k =

√
H

2
, x =

1

k
sin

�

2
.

Changing variables,

ẋ =
1

2k
cos

�

2
�̇, ẋ2 =

1

4k2

(
1− sin2 �

2

)
�̇2 =

1

4

(
1

k2
− x2

)
�̇2

Conservation of energy becomes

2k2 = 2
ẋ2

k−2 − x2
+ 2k2x2

Thus we get the di�erential equation

ẋ2 = (1− x2)(1− k2x2)

This can be solved in terms of Jacobi functions, which generalize trigono-
metric functions such as sin and cos.

3.2 Primer on Jacobi Functions

The functions sn(u, k), cn(u, k),dn(u, k) are de�ned as the solutions of the cou-
pled ODE

sn′ = cn dn, cn′ = −sn dn, dn′ = −k2sn cn

with initial conditions

sn = 0, cn = 1, dn = 1, at u = 0.

It follows that

sn2 + cn2 = 1, k2sn2 + dn2 = 1

Thus

sn′2 = (1− sn2)(1− k2sn2)

Thus we see that

x(t) = sn(t, k)
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is the solution to the pendulum. The inverse of this function (which expresses
t as a function of x) can be expressed as an integral

t =

ˆ x

0

dy√
(1− y2)(1− k2y2)

This kind of integral �rst appeared when people tried to �nd the perimeter
of an ellipse. So it is called an elliptic integral.

Detrour: Show that the perimeter of the ellipse x2

a2 + y2

b2 = 1 is equal to

4a
´ 1

0

√
1−k2x2

1−x2 dx, where k =
√

1− b2

a2 .

The functions sn, cn,dn are called elliptic functions. The name is a bit
unfortunate, because these functions appear even when there is no ellipse in
sight, such as in our case. The parameter k is called the elliptic modulus.

Clearly, if k = 0 , these functions reduce to trigonometric functions:

sn(u, 0) = sinu, cn(u, 0) = cosu, dn(u, 0) = 1.

Thus, for small energies k → 0 and our solution reduces to that of the
harmonic oscillator.

From the connection with the pendulum it is clear that the functions are
periodic, at least when 0 < k < 1 (so that 0 < H < 2 and the pendulum
oscillates around the equilibrium point). The period of oscillation is four times
the time it takes to go from the bottom to the point of maximum de�ection

T = 4K(k), K(k) =

ˆ 1

0

dy√
(1− y2)(1− k2y2)

This integral is called the complete elliptic integral. When k = 0, it
evaluates to �

2 so that the period is 2�. That is correct, since we chose the unit

of time such that ! =
√

l
g = 1 and the period of the harmonic oscillator is 2�

! .

As k grows, the period increases: the pendulum oscillates with larger amplitude.
As k → 1 the period tends to in�nity: the pendulum has just enough energy to
get to the top of the circle, with velocity going to zero as it gets there.

3.3 Elliptic Curves

Given the position x, and velocity ẋ at any instant, they are determined for all
future times by the equations of motion. Thus it is convenient to think of a
space whose co-ordinates are (x, ẋ) .The conservation of energy determines the
shape of the orbit in phase space.

ẋ2 = (1− x2)(1− k2x2)

In the case of a pendulum, this is an extremely interesting thing called an
elliptic curve. The �rst thing to know is that an elliptic curve is not an
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Figure 3.2:

ellipse. It is called that because elliptic functions can be used to parametrically
decribe points on this curve:

ẋ = sn′(u, k), x = sn(u, k)

For small k an elliptic curve looks more or less like a circle; but as k > 0 it
is deformed into a more interesting shape. When k → 1 it tends to a parabola.

Only the part of the curve with real x between 1 and −1 has a physical
signi�cance in this application.But, as usual to understand any algebraic curve
it helps to analytically continue into the complex plane. The surprising thing
is that the curve is then a torus; this follows from the double peridocity of sn,
which we prove below.

3.4 Addition Formula

Suppose x1 is the position of the pendulum after a time t1 has elapsed, assuming
that at at time zero, x = 0 as well. Similarly let x2 be the position at some time
t2. If t3 = t1 + t2, and x3 is the position at time t3, it should not be surprising
that x3 can be found once we know x1 and x2 . What is surprising is that x3 is
an algebraic function of the positions. This is because of the addition formula
for elliptic functions:

ˆ x1

0

dy√
(1− y2)(1− k2y2)

+

ˆ x2

0

dy√
(1− y2)(1− k2y2)

=

ˆ x3

0

dy√
(1− y2)(1− k2y2)

x3 =
x1

√
(1− x2

2)(1− k2x2
2) + x2

√
(1− x2

1)(1− k2x2
1)

1− k2x2
1x

2
2
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If k = 0 this is just the addition formula for sines: sin[�1+�2] = sin �1

√
1− sin2 �2+

sin �2

√
1− sin2 �1. This operation x1, x2 7→ x3 satis�es the conditions for an

abelian group.The point of stable equilibrium x = 0, ẋ = 1 is the identity ele-
ment. The inverse of x1 just −x1. You can have fun trying to prove algebraically
that the above operation is associative. (Or die trying.)

By adding x to itself using the above formula we can get a kind of multipli-
cation of an integer with x. (If n is negative, you add −x to itself ∣n∣ times.)
If n > 1 the algebraic formula for this multiplication is quite complicated: the
sequence of points x, 2 ∗ x, 3 ∗ x, 4 ∗ x ⋅ ⋅ ⋅ . If we let a strobe light shine at
regular intervals and note the positions of the pendulum at those times, this is
the sequence we will get. Suppose you know the initial position x and a much
later position n ∗ x; can you determine n? This is very hard, because for large
enough n the sequence of positions will look almost random, unless the strobe
period is a rational multiple of the period of the pendulum. Thus even a simple,
exactly solvable system like the pendulum can led to almost random sequences
of position.

But for certain special choices of x ,which correspond to a strobe light set
to a rational fraction of the period of oscillation, the multiples of x will form a
cyclic subgroup.

3.5 Imaginary Time

The replacement t → it has the e�ect of reversing the sign of the potential in
Newton's equations, q̈ = −V ′(q). In our case, �̈ = − sin � ,it amount to revesing
the direction of the gravitational �eld. In term of of co-ordinates, this amounts
to � → � + � . Under the transformations t → it, � → � + �, the conservation
of energy

k2 =
�̇2

4
+ sin2 �

2

goes over to

1− k2 =
�̇2

4
+ sin2 �

2

The quantity k
′

=
√

1− k2 is called the complementary modulus. In
summary, the simple pendulum has a symmetry

t→ it, � → � + �, k → k′.

This transformation maps an oscillation of small amplitude (small k)to one
of large amplitude (k close to 1 ).

This means that if we analytically continue the solution of the pendulum
into the complex t−plane, it must be periodic with period 4K(k) in the real
direction and 4K(k′) in the imaginary direction.
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Exercise 3. Using the change of variable x 7→ 1√
1−k′2x2

, show that K(k′) =´ 1
k

1
dx√

[x2−1][1−k2x2]
.

3.5.1 The case of H = 1

The minimum value of energy is zero and the maximum value for an oscillation
is 2. Exactly half way is the oscillation whose energy is 1 ; the maximum angle
is �

2 . This orbit is invariant under the above transformation that inverts the
potential: either way you look at it, the pendlum bob is horizontal at maximum
de�ection. In this case the real and imaginary periods are of equal magnitude.

3.6 The Arithmetic-Geometric Mean

Landen, and later, Gauss. found a surprising symmetry for the elliptic integral K(k)
that allows a calculation of its value by iterating simple algebraic operations. In our
context it means that the period of a pendulum is unchanged if the energy H and
angular frequency ! are changed in a certain way that decreases their values. By
iterating this we can make the energy tend to zero: but in this limit we know that
the period is just 2� over the angular frequency. In this section we do not set

! = 1 but we continue to factor out ml2 from the Lagrangian as before.

Then the Lagrangian L = 1
2 �̇

2−!2[1− cos �] and H have dimensions of the square
of frequency.

Let us go back and look at the formula for the period:

T =
4

!
K(k), K(k) =

ˆ 1

0

dx√
(1− x2)(1− k2x2)

, 2k2 =
H

!2
.

If we make the substitution

x = sin�

this becomes

T =
4

!

ˆ �
2

0

d�√
1− k2 sin2 �

That is,

T (!, b) = 4

ˆ �
2

0

d�√
!2 cos2 �+ b2 sin2 �

where

b =

√
!2 − H

2
.

Note that ! > b with ! → b implying H → 0.The surprising fact is that the
integral remains unchanged under the transformations
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!1 =
! + b

2
, b1 =

√
!b.

T (!, b) = T (!1, b1)

Exercise 4. Prove this identity. First put y = b tan� to get T (!, b) = 2
´∞
−∞

dy√
(!2+y2)(b2+y2)

. Then make the change of variable y = z+
√
z2 + !b. This proof, due to New-

man, was only found in 1985. Gauss' and Landen's proofs were much clumsier.
For further explanation, see Elliptic Curves by H. McKean and V. Moll .

That is,! is replaced by the arithmetic mean and b by the geometric mean.
Recall that given two numbers a>b>0, the arithmetic mean is de�ned by

a1 =
a+ b

2

and the geometric mean is de�ned as

b1 =
√
ab.

As an exercise it is easy to prove that in general a1 ≥ b1. If we iterate this
transformation,

an+1 =
an + bn

2
, bn+1 =

√
anbn

The two sequences converge to the same number,an → bn as n → ∞. This
limiting value is called the Arithmetic-Geometric Mean AGM(a, b)

Thus, the energy of the pendulum tends to zero under this iteration applied to
!and b, since !n → bn; and the period is the limit of 2�

!n
:

T (!, b) =
2�

AGM(!, b)
.

The convergence of the sequence is quite fast, and gives a very accurate, and
elementary, way to calculate the period of a pendulum; i.e., without having to
calculate any integral.

Exercise 5. Calculate the period of the pendulum with ! = 1, H = 1 by
calculating the Arithmetic-Geometric mean. How many iterations do you need
to get an accuracy of �ve decimal places for the AGM?

3.6.1 The Arithmetic-Harmonic Mean is the Geometric

Mean

Why would Gauss have thought of the Arithmetic-Geometric Mean? This is perhaps
puzzling to a modern reader brought up on calculators. But it is not so strange if
you know how to calculate square roots by hand.
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Recall that the harmonic mean of a pair of numbers is the reciprocal of the
mean of their reciprocals. That is

HM(a, b) =
1

1
2

(
1
a + 1

b

) =
2ab

a+ b

Using (a + b)2 > 4ab it follows that a+b
2 > HM(a, b).Suppose we de�ne an

iterative process where by we take the successive arithmetic and harmonic means:

an+1 =
an + bn

2
, bn+1 = HM(an, bn)

These two sequences approach each other and the limit can be de�ned to be
the Arithmetic-Harmonic Mean.

AHM(a, b) = lim
n→∞

an

In other words, AHM(a, b) is de�ned the invariance property

AHM(a, b) = AHM

(
a+ b

2
,HM(a, b)

)
What is this quantity? It is none other than the geometric mean! Simply verify

that

√
ab =

√
a+ b

2

2ab

a+ b
.

Thus iterating the arithmetic and harmonic means with 1 is a good way to
calculate the square root of any number. (Try it.)

Now you see that it is natural to wonder what we would get if we do the same
thing one more time, iterating the Arithmetic and the Geometric Means.

AGM(a, b) = AGM

(
a+ b

2
,
√
ab

)
.

I don't know if this is how Gauss discovered it: but it is not such a strange idea.

Exercise 6. Relate the Harmonic-Geometric Mean, de�ned by the invariance
below to the AGM.

HGM(a, b) = HGM

(
2ab

a+ b
,
√
ab

)
Exercise 7. (Suggested research probem.) What is the function de�ned by the
following invariance property?

AAGM(a, b) = AAGM

(
a+ b

2
,AGM(a, b)

)
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3.7 Doubly Periodic functions

This leads to the modern de�nition: an elliptic function is a doubly periodic

analytic function of a complex variable. We allow for poles, but not branch
cuts: thus, to be precise, an elliptic function is a doubly periodic meromorphic
function of a complex variable.

f(z +m1�1 +m2�2) = f(z)

for integer m1,m2 and complex numbers �1, �2 which are called the periods.
The points at which ftakes the value form a lattice in the complex plane; once we
know the values of f in a parallelogram whose sides are �1 and �2, we will know it
every where by translation by some integer linear combination of the periods. In
the case of the simple pendulum above, one of the periods is real and the other is
purely imaginary. More generally, they could both be complex numbers; as long as
the area of the fundamental parallelolgram is non-zero, we will get a lattice. By a
rotation and a rescaling of the variable, we can always choose one of the periods to
be real. The ratio of the two periods

� =
�2
�1

is thus the quantity that determines the shape of the lattice. It is possibe to
take some rational function and sum over its values at the points z+m1�1 +m2�2
to get a doubly periodic function, provided that this sum converges. An example is

P ′(z) = −2

∞∑
m1,m2=−∞

1

(z +m1�1 +m2�2)
3

The power 3 in the denominator is the smallest one for which this sum converges;
the factor of −2 in front is there to agree with some conventions.. It has triple
poles at the origin and all of its translates m1�1 + m2�2. It is the derivative of
another elliptic function called P, the Weierstrass elliptic function. It is possible
to express the Jacobi elliptic functions in terms of the Weierstrass function: these
two approaches complement each other. See Elliptic Curves by H. McKean and V.
Moll for more on these matters.



Chapter 4

The Kepler Problem

Much of mechanics was developed in order to understand the motion of planets.
Long before Copernicus, many astronomers knew that the apparently erratic
motion of the planets can be simply explained as circular motion around the Sun.
For example, the Aryabhateeyam written in 499 AD gives many calculations
based on this model. But various religious taboos and superstitions prevented
this simple picture from being universally accepted. It is ironic that the same
superstitions (e.g., astrology) were the prime cultural motivation for studying
planetary motion. Kepler himself is a transitional �gure. He was originally
motivated by astrology, yet had the scienti�c sense to insist on pecise agreement
between theory and observation.

Kepler used Tycho Brahe's accurate measurements of planetary positions to
�nd a set of important re�nements of the heliocentric model. The three laws
of planetary motion he discovered started the scienti�c revolution which is still
continuing. We will rearrange the order of presentation of the laws of Kepler
to make the logic clearer. Facts are not always discovered in the correct logical
order: reordering them is essential to understanding them.

4.1 The orbit of a planet lies on a plane which

contains the Sun

We may call this zeroth law of planetary motion: this is a signi�cant fact in
itself. If the direction of angular momentum is preserved, the orbit would have
to lie in a plane. Since L= r×p , this plane is normal to the direction of L. In
polar co-ordinates in this plane, the angular momentum is

L = mr2 d�

dt

That is, the moment of inertia times the angular velocity. In fact, all the
planetary orbits lie on the same plane to a good approximation. This plane

24
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is normal to the angular momentum of the original gas cloud that formed the
solar system.

4.2 The line connecting the planet to the Sun

sweeps equal areas in equal times

This is usually called the second Law of Kepler. Since the rate of change of this

area is r2

2
d�
dt , this is the statement that

r2 d�

dt
= constant

This can be understood as due to the conservation of angular momentum.
If the force is always directed towards the Sun, this can be explained.

4.3 Planets move along elliptical orbits with the

Sun at a focus

This is the famous �rst Law of Kepler. It is signi�cant the motion is a closed
curve and that it is periodic: for most central potentials neither statement is
true.

An ellipse is a curve on the plane de�ned by the equation, in polar co-
ordinates r, �

�

r
= 1 + � cos�

The parameter � must be between 0 and 1 and is called the eccentricity.
It measures the deviation of an ellipse from a circle: if � = 0 the curve is a
circle of radius � . In the opposite limit �→ 1 ( keeping � �xed) it approaches
a parabola. The parameter � measures the size of the ellipse.

A more geometrical description of the ellipse is this: Choose a pair of points
on the plane F1, F2, the Focii. If we let a point move on the plane such that
the sum of its distances to F1 and F2 i s a constant, it will trace out an ellipse.

Exercise 8. Derive the equation for the ellipse above from this geometrical
description. ( Choose the origin of the polar co-ordinate system to be F1. What
is the position of the other focus ? )

The line connecting the two farthest points on an ellipse is called its major
axis; this axis passes through the focii. The perpendicular bisector to the major
axis is theminor axis. If these are equal in length, the ellipse is a circle; in this
case the focii coincide. Half of the length of the major axis is called a usually.
Similarly, the semi-minor-axis is called b.

Exercise 9. Show that the major axis is 2�
1−�2 and that the eccentricity is

� =
√

1− b2

a2 .
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The eccentricity of planetary orbits is quite small: a few percent. Comets,
some asteroids and planetary probes have very eccentric orbits. If the eccentric-
ity is greater then one, the equation describes a curve that is not closed, called
a hyperbola.

In the Principia, Newton proved that an elliptical orbit can be explained by
a force directed towards the Sun, which is inversely proportional to the square
of distance. Where did he get the idea of a force proportional to the square of
distance? The third law of Kepler provides a clue.

4.4 The ratio of the cube of the semi-major axis

to the square of the period is the same for all

planets

It took seventeen years of hard work for Kepler to go from the second Law
to this third law. Along the way, he considered and discarded many ideas on
planetary distances that came from astrology and Euclidean geometry (Platonic
solids).

If we ignore the eccentricity (which is anyway small) for the moment and
consider just a circular orbit of radius r, this is saying that

T 2 ∝ r3

We already know that the force on the Planet must be pointed toward the
Sun, from the conservation of angular momentum. What is the dependence of
the force on distance that wil give this dependence of the period? Relating the
force to the centripetal acceleration,

m
v2

r
= F (r)

Now, v = r�̇ and �̇ = 2�
T for uniform circular motion.Thus

T 2 ∝ r

F (r)

So we see that F (r) ∝ 1
r2 . Hooke, a much less renowned scientist than

Newton, veri�ed using a mechanical model that orbits of particles in this force
are ellipses. Newton did not understand this at the time. He discovered an
amazing proof of this fact using only geometry (no calculus) while he was writing
the Principia.

From the fact that the ratio is independent of the planet, we can conclude
that the acceleration is independent of the mass of the plant: that the force
is proportional to the product of masses. Thus we arrive at Newton's Law of
Gravity:

The gravitational force on a body due to another is pointed along
the line connecting the bodies; it has magnitude proportional to
the product of masses and inversely to the square of the distance.
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Figure 4.1:

4.5 The shape of the orbit

We now turn to deriving the shape of a planetary orbit from Newton's law of
gravity. The Lagrangian is, in plane polar co-ordinates centered at the Sun,

L =
1

2
m
[
ṙ2 + r2�̇2

]
+
GMm

r

From this we deduce the momenta

pr = mṙ, p� = mr2�̇

and the hamiltonian

H =
p2
r

2m
+

p2
�

2mr2
− GMm

r
.

Since ∂H
∂� = 0 it follows right away that p� is conserved.

H =
p2
r

2m
+ V (r)

where

V (r) =
p2
�

2mr2
− GMm

r

is an e�ective potential, the sum of the gravitational potential and the
kinetic energy due to angular motion.

So,

ṙ =
pr
m

ṗr = −V ′(r)

Right away, we see that there is a circular orbit at the minimum of the
potential:

V ′(r) = 0 =⇒ r =
p2
�

GMm2
.
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More generally, when H < 0, we should expect an oscillation around this
minimum., between the turning points , which are the roots of H − V (r)=0.
For H > 0 the particle will come in from in�nity and, after re�ection at a
turning point, escape back to in�inity.

The shape of the orbit is given by relating r to �. Using

dr

dt
=
d�

dt

dr

d�
=

p�
mr2

dr

d�

This suggests the change of variable

u = A+
�

r
, =⇒ dr

dt
= − p�

m�

du

d�
= − p�

m�
u′

for some constants A, � we will choose for convenience later. We can express
the conservation of energy

H =
1

2
mṙ2 + V (r)

as

H =
p2
�

2m�2
u′2 +

p2
�

2m�2
(u−A)2 − GMm

�
(u−A),

2m�2H

p2
�

= u′2 + (u−A)2 − 2GMm2�

p2
�

(u−A),

We can now choose the constants so that the term linear in u cancels out

A = −1, � =
p2
�

GMm2

and

u′2 + u2 = �2

�2 = 1 +
2p2
�H

(GM)2m3

A solution is now clear

u = � cos�

or

�

r
= 1 + � cos�.

This is the equation for a conic section of eccentricity �. If H < 0 so that
the planet cannot escape to in�nity, this is less than one, giving an ellipse as
the orbit.
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The Rigid Body

If the distance between any two points on a body remains constant as it moves,
it is a rigid body. Any con�guration of the rigid body can be reached from
the initial one by a translation of its center of mass and a rotation around it.
Since we are mostly interested in the rotational motion, we will only consider
the case of a body on which the total force is zero: the center of mass moves
at a constant velocity. In this case we can transform to the reference frame in
which the center of mass is at rest: the origin of our co-ordinate system can be
placed there. It is not hard to put back in the translational degree of freedom
once rotations are understood.

The velocity of one of the particles making up the rigid body can be split as

v = Ω× r

The vector Ω is the angular velocity :Its direction is the axis of rotation,
and its magnitude the rate of change of its angle. The kinetic energy of this
particle inside the body is

1

2
[Ω× r]

2
�(r)d3r

Here �(r) is the mass density at the position of the particle; we assume that
it occupies some in�nitesimally small volume d3r. Thus the total rotational
kinetic energy is

T =
1

2

ˆ
[Ω× r]

2
�(r)d3r

Now, (Ω× r)2 = Ω2r2 − (Ω ⋅ r)2 = ΩiΩj
[
r2�ij − rirj

]
we get

T =
1

2
ΩiΩj

ˆ
�(r)

[
r2�ij − rirj

]
d3r

29
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5.1 The Moment of Inertia

De�ne the moment of inertia to be the symmetric matrix

Iij =

ˆ
�(r)

[
r2�ij − rirj

]
d3r

Thus

T =
1

2
ΩiΩjIij

Being a symmetric matrix, there is an orthogonal co-ordinate system in
which the moment of inetria is diagonal:

T =
1

2

[
I1Ω2

1 + I2Ω2
2 + I3Ω2

3

]
The eigenvalues I1, I2, I3 are called the principal moments of inertia.

They are positive numbers because Iij is a positive matrix; i.e., uT Iu ≥ 0 for
any u.

Exercise 10. Show that the sum of any two principal moments is greater than
or equal to the third one. I1 + I2 ≥ I3 etc.

The shape of the body and how mass is distributed inside it, determines
the moment of inertia. The simplest case is when all three are equal. This
happens if the body is highly symmetric: a sphere, a regular solid such as a
cube. The next simplest case is when two of the moments are equal and the
third is di�erent. This is a body that has one axis of symmetry: a cylinder, a
prism whose base is a regular polygon etc. The most complicated case is when
the three eigenvalues are all unequal. This is the case of the asymmetrical top.

5.2 Angular Momentum

The angular momentum of a small particle inside the rigid body is

dMr× v =
[
�(r)d3r

]
r× (Ω× r)

Using the identity r × (Ω× r) = Ωr2 − r (Ω ⋅ r) we get the total angular
momentum of the body to be

L =

ˆ
�(r)[r2Ω− r (Ω ⋅ r)]d3r

In terms of components

Li = IijΩj
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Thus the moment of inertia relates angular velocity to angular momentum,
just as mass relates velocity to momentum. The important di�erence is that
moment of inetria is a matrix so that L and Ω do not have to point in the same
direction. Recall that the rate of change of angular momentum is the torque, if
they are measured in an inertial reference frame.

Now here is a tricky point. We would like to use a co-ordinate system in
which the moment of inetria is a diagonal matrix: that would simplify the
relation of angular momentum to angular velocity:

L1 = I1Ω1

etc. But this may not an inertial co-ordinate system, as it's axes have to
rotate with the body. So we must relate the change of a vector (such as L) in
a frame that is �xed to the body to an inertial frame. The di�erence between
the two is a rotation of the body itself, so that[

dL

dt

]
inertial

=
dL

dt
+ Ω× L

This we set equal to the torque acting on the body as a whole.

5.3 Euler's Equations

Even in the special case when the torque is zero the equations of motion of a
rigid body are non-linear, since Ω and L are proportional to each other:

dL

dt
+ Ω× L = 0

In the co-ordinate system with diagonal moment of inertia

Ω1 =
L1

I1

these become

dL1

dt
+ a1L2L3 = 0, a1 =

1

I2
− 1

I3

dL2

dt
+ a2L3L1 = 0, a2 =

1

I3
− 1

I1

dL3

dt
+ a3L1L2 = 0, a3 =

1

I1
− 1

I2

These equations were originally derived by Euler. Clearly, if all the principal
moments of inertia are equal these are trivial to solve: L is a constant.

The next simplest case

I1 = I2 ∕= I3
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is not too hard either. Then a3 = 0 and a1 = −a2.
It follows that L3 is a constant. Also, L1 and L2 precess around this axis:

L1 = A cos!t, L2 = A sin!t

with

! = a1L3.

An example of such a body is the Earth. It is not quite a sphere, because it
bulges at the equator compared to the poles. The main motion of the Earth is its
rotation around the North-South axis once every 24 hours. But this axis itself
precesses once every 26000 years. This means that the axis was not always
aligned with the Pole star in distant past. Also, the times of the equinoxes
change by a few minutes each year. As early as 280BC Aristarchus described this
precsession of the equinoxes. It was Newton who �nally explained it physically.

5.4 Jacobi's Solution

The general case of unequal moments can be solved in terms of Jacobi elliptic
functions: in fact these functions were invented for this purpose. But before we
do that it is useful to �nd the constants of motion. It is no surprise that the
energy

H =
1

2
I1Ω2

1 +
1

2
I2Ω2

2 +
1

2
I3Ω2

3 =
L2

1

2I1
+
L2

2

2I2
+
L2

3

2I3

is conserved. You can verify that the magnitude of angular momentum is
conserved as well:

L2 = L2
1 + L2

2 + L2
3.

Exercise 11. Calculate the time derivatives of Hand L2 and verify that they
are zero.

Recall that

sn′ = cn dn, cn′ = −sn dn, dn′ = −k2sn cn

with initial conditions

sn = 0, cn = 1, dn = 1, at u = 0.

Moreover

sn2 + cn2 = 1, k2sn2 + dn2 = 1

Make the ansatz

L1 = A1cn(!t, k) L2 = A2sn(!t, k), L3 = A3dn(!t, k)
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We get conditions

−!A1 + a1A2A3 = 0

!A2 + a2A3A1 = 0

−!k2A3 + a3A1A2 = 0

We want to express the �ve constants A1, A2, A3, !, k that appear in the
solution in terms of the �ve physical parameters H,L, I1, I2, I3. Some serious
algebra will give1

! =

√
(I3 − I2)(L2 − 2HI1)

I1I2I3

k2 =
(I2 − I1)(2HI3 − L2)

(I3 − I2)(L2 − 2HI1)

and

A2 =

√
(2HL3 − L2)I2

I3 − I2
etc.
The quantum mechanics of the rigid body is of much interest in molecular

physics. So it is interesting to reformulate this theory in a way that makes the
passage to quantum mechanics more natural. The Poisson brackets of angular
momentum derived later give such a formulation.

1We can label our axes such that I3 > I2 > I1.



Chapter 6

Hamilton's Principle

William Rowan Hamilton was the Royal Astronomer for Ireland. In this capac-
ity, he worked on two important problems of mathematical interest: the motion
of celestial bodies and the properties of light needed to design telescopes. Amaz-
ingly, he found that the laws of mechanics and those of ray optics were, in the
proper mathematical framework, remarkably similar. But ray optics is only an
approximation, valid when the wavelength of light is small. He probably won-
dered in the mid nineteenth century: could mechanics be the short wavelength
approximation of some wave mechanics?

The discovery of quantum mechanics brought this remote oupost of theoret-
ical physics into the very center of modern physics.

6.1 Generalized Momenta

Recall that to each co-ordinate qi we can associate a momentum variable,

pi =
∂L

∂q̇i

pi is said to be conjugate to qi. It is possible to eliminate the velocities and
write the equations of motion in terms of qi, pi In this language the equations
will be a system of �rst order ODEs. Recall that from the de�nition of the
hamiltonian

L =
∑
i

piq̇
i −H.

So if we view H(q, p) as a function of position and momentum, we get a
formula for the action

S =

ˆ [∑
i

piq̇
i −H(q, p, t)

]
dt

34
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Suppose we �nd the condition for the action to be an extremum, treating
qi, pi as independent variables:

�S =

ˆ ∑
i

[
�piq̇

i + pi
d

dt
�qi − �pi

∂H

∂pi
− �qi ∂H

∂qi

]
dt = 0

We get the system of ODE

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

These are called Hamilton's equations. They provide an alternative for-
mulation of mechanics.

Example 12. A particle moving on the line under a potential has L = 1
2mq̇

2−
V (q) and H = p2

2m + V (q)
It follows that

dq

dt
=

p

m
,

dp

dt
= −V ′(q)

Clearly, these are equivalent to Newton's second law.

Example 13. For the simple pendulum

L =
1

2
�̇2 − [1− cos �] , H =

p2
�

2
+ 1− cos �

In terms of the variable x = 1
k sin �

2

L = 2k2

[
ẋ2

1− k2x2
− x2

]
It follows that

p =
∂L

∂ẋ
= 4k2 ẋ

1− k2x2
, H = 2k2

[(
1− k2x2

)
p2 + x2

]
If we choose the parameter k such that H = 2k2 the relation between p and

x becomes

p2 =
1− x2

1− k2x2
.

This is another description of the elliptic curve, related rationally to the
more standard one:

y = (1− k2x2)
p

4k2
, y2 = (1− x2)(1− k2x2).
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Example 14. A particle moving under a potential in three dimensions has

L =
1

2
mṙ2 − V (r)

so that

H =
p2

2m
+ V (r)

ṙ =
p

m
, ṗ = −∇V

For the Kepler problem

V (r) = −GMm

∣r∣

6.2 Vector Fields and Integral Curves

Suppose we have a space1 M on which there is a co-ordinate system x�. The
number of components of the co-ordinates is the dimension of the space. An
in�nitesimal change of the co-ordinate at each point de�nes a vector �eld

�x� = V �(x)

Given a vector �eld V and an initial point x0, we can construct a curve on
M : start at x0 and move to the point x�1 = x�0 + V �(x0)Δt at a short time Δt
later. Then we move to x�2 = x�1 + V �(x1)Δt at time 2Δt. Repeating this, we
will be at x�n = x�n−1 + V �(xn−1)Δt at time nΔt. In the limit as Δt → 0 the
sequence of points xn merge into a continuous curve which satis�es the ODE

dx�

dt
= V �(x)

with initial condition x�(0) = x�0 . This is called the integral curve of the vec-
tor �eld V �. The in�nitesimal change of a function under a small displacement
along V is

V f = V �∂�f

In fact, in modern di�erential geometry, we regard a vector �eld as this
di�erential operator

V = V �∂�

1By �space� we mean �di�erential manifold�.
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6.2.1 The Algebraic Formulation of a Vector Field

The idea of a vector �eld has a more algebraic formulation that has turned out to
be useful. The set of functions on the space M form a commutative algebra over
the real number �eld: we can multiply them by constants (real numbers); and we
can multiply two functions to get another:

fg(x) = f(x)g(x)

A derivation of a commutative algebra A is a linear map V : A → A that
satis�es the Leibnitz rule

V (fg) = (V f)g + fV (g)

We can add two derivations to get another. Also we can multiply them by real
numbers to get another derivation. The set of derivations of a commutative algebra
form a module over A; i.e., the left multiplication fV is also a derivation. In our
case of functions on a space, each component of the vector �eld is multiplied by
the scalar f .

In this case, a derivation is the same as a �rst order di�erential operator or
vector �eld:

V f = V �∂�f

The coe�cient of the dervative along each co-ordinate is the component of the
vector �eld in the direction.

The product of two derivations is not in general a derivation: it does not satisfy
the Leibnitz rule:

V (W (fg)) = V ((Wf)g + fW (g))

= V (W (f))g + 2(Wf)(V g) + fV (W (g))

But the commutator of two derivations, de�ned as

[V,W ] = VW −WV

is always another derivation:

V (W (fg))−W (V (fg)) = V (W (f))g + fV (W (g))−W (V (f))g − fW (V (g))

In terms of components,

[V,W ]� = V �∂�W
� −W �∂�V

�

We sum over repeated indices as is the convention in geometry. The commutator
of vector �elds satis�es the identities
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[V,W ] + [W,V ] = 0

[[U, V ],W ] + [[V,W ], U ] + [[W,U ], V ] = 0

Any algebra that sats�es these identities is called a Lie algebra. The set of
vector �elds on a manifold is the basic example. Lie algebras describe in�nitesimal
transformations. Many of them are of great interst in physics, as they describe
symmetries. More on this later.

Example 15. The vector �eld

V =
∂

∂x

generates translations along x. Its integral curve is x(t) = x0 + t.

Example 16. On the other hand,

W = x
∂

∂x

generates scaling. That is, its integral curve is

x(u) = eux0.

We see that these two vector �elds have the commutator

[V,W ] = V

Example 17. In�nitesimal rotations around the three Cartesian axes on R3

are described by the vector �elds

Lx = −y ∂
∂z

+ z
∂

∂y
, Ly = −z ∂

∂x
+ x

∂

∂z
, Lz = −x ∂

∂y
+ y

∂

∂x

They satisfy the commutation relations

[Lx, Ly] = Lz, [Ly, Lz] = Lx, [Lz, Lx] = Ly.

Given two vector �elds V,W , we can imagine moving from x0 along the integral
curve of V for a time �1 and then along that of W for some time �2. Now suppose
we reverse the order by �rst going along the integral curve of W for a time �2 and
then along that of V for a time �2. The di�erence between the two endpoints is
order �1�2, but is not in general zero. It is equal to the commutator:

[V �∂�W
� −W �∂�V

�] �1�2
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Thus, the commutator of vector �elds which we de�ned above algebraically, has
a geometric meaning as the di�erence between moving along the integral curves
in two di�erent ways. Such an interplay of geometry and algebra enriches both
�elds. Usually geometry helps us imagine things better or relate the mathematics to
physical situations. The algebra is more abstract and allows generalizations to new
physical situations that were previously unimaginable. For example, the transition
from classical to quantum mechanics involves non-commutative algebra. These days
we are circling back and constructing a new kind of geometry, non-commutative

geometry, which applies to quantum systems.

6.3 Phase Space

Being �rst order ODE, the solution for Hamilton's equations is determined once
the value of (qi, pi) is known at one instant. The spaceM whose co-ordinates are
(qi, pi) is called phase space. Each point of phase space determines a solution
of Hamilton's equation, which we call the orbit through that point. Hamilton's
equations tell us how a given point in phase space evolves under an in�nitesimal
time translation: they de�ne a vector �eld on the phase space. By compounding
such in�nitesimal transformations, we can construct time evolution over �nite
time intervals: the orbit is the integral curve of Hamilton's vector �eld.

VH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
.

Since the state of the system is completely speci�ed by a point on the phase
space, any physical observable must be a function f(q, p) ; that is, a function
f : M → R of position and momentum2 . The hamiltonian itself is an example
of an observable;perhaps the most important one.

We can work out an interesting formula for the total time derivative of an
observable:

df

dt
=
∑
i

[
dqi

dt

∂f

∂qi
+
dpi
dt

∂f

∂pi

]
Using Hamilton's equations this becomes

df

dt
=
∑
i

[
∂H

∂pi

∂f

∂qi
− ∂H

∂qi
∂f

∂pi

]
Given any pair of observables, we de�ne their Poisson bracket to be

{g, f} =
∑
i

[
∂g

∂pi

∂f

∂qi
− ∂g

∂qi
∂f

∂pi

]
Thus

2Sometimes we would allow also an explicit dependence in time, but we ignore that possi-

bility for the moment.
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df

dt
= {H, f}

A particular example is when f is one of the co-ordinates themselves:

{H, qi} =
∂H

∂pi
, {H, pi} = −∂H

∂qi
.

You may verify the canonical relations

{pi, pj} = 0 =
{
qi, qj

}
,
{
pi, q

j
}

= �ji

Here �ji =

{
1 if i = j

0 otherwise
is the Kronecker symbol.

Exercise 18. Show that the Poisson bracket satis�es the conditions for a Lie
algebra:

{f, g}+ {g, f} = 0, {{f, g} , ℎ}+ {{g, ℎ} , f}+ {{ℎ, f} , g} = 0

and in addition that

{f, gℎ} = {f, g}ℎ+ g {f, ℎ} .

Together these relations de�ne a Poisson algebra.

6.3.1 The non-commutative algebra of quantum observ-

ables

In quantum mechanics, observables are still represented as functions on the phase
space. However the rule for multiplying observables is no longer the obvious one:
it is a non-commuatative operation. Without explaining how it is derived, we can
exhibit the formula for this quantum multiplication law in the case of one degree of
freedom:

f ∘ g = fg − iℏ
2

[
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p

]

+
1

2

(
iℏ
2

)2 [
∂2g

∂p2

∂2f

∂q2
− ∂2g

∂q2

∂2f

∂p2

]
+ ⋅ ⋅ ⋅

Or,

f ∘ g = fg +

∞∑
r=1

1

r!

(
− iℏ

2

)r [
∂2rg

∂pr
∂rf

∂qr
− ∂rg

∂qr
∂rf

∂pr

]
This is an associative, but not commutative, multiplication: (f ∘ g) ∘ ℎ =

f ∘ (g ∘ ℎ). (It can be proved using a Fourier integral representation.) Note that
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the zeroth order term is the usual multiplication and that the Poisson bracket is
the �rst correction.In particular, in quantum mechanics we have the Heisenberg
commutation relations

[p, q] = −iℏ.

where the commutator is de�ned as [p, q] = p ∘ q − q ∘ p.
Thus, Poisson algebras are approximations to non-commutative but associative

algebras. Is there a non-commutative generalization of geometric ideas such as
co-ordinates and vector �elds? This is the subject of non-commutative geometry,
being actively studied by mathematicians and physicists.This approach to quantiza-
tion, which connects hamiltonian mechanics to Heisenberg's formulation of quantum
mechanics, is called deformation quantization. Every formulation of classical me-
chanics has its counterpart in quantum mechanics; each such bridge between the
two theories is convenient approach to certain problems. Deformation quantization
allows us to discover not only non-commutative geometry but also new kinds of
symmetries of classical and quantum systems where the rules for combining con-
served quantities of isolated systems is non-commutative: quantum groups. This
explained why certain systems that did not have any obvious symmetry could be
solved by clever folks such as Bethe, Yang and Baxter. Once the principle is dis-
covered, it allows solution of even more problems . But now we are entering deep
waters.

6.4 Canonical Transformations

Suppose we make a change of variables

qi 7→ Qi(q, p), pi 7→ Pi(q, p)

in the phase space. What happens to the Poisson brackets of a pair of
observables under this? Using the chain-rule of di�erentiation

∂f

∂qi
=

∂f

∂Qj
∂Qj

∂qi
+

∂f

∂Pj

∂Pj
∂qi

∂f

∂pi
=

∂f

∂Qj
∂Qj

∂pi
+

∂f

∂Pj

∂Pj
∂pi

Using this, and some elbow grease, you can show that

{f, g} =
{
Qi, Qj

} ∂f

∂Qi
∂g

∂Qj
+{Pi, Pj}

∂f

∂Pi

∂g

∂Pj
+
{
Pi, Q

j
}{ ∂f

∂Pi

∂g

∂Qj
− ∂f

∂Qj
∂g

∂Pi

}
So if the new variables happen to satisfy the canonical relations as well:

{Pi, Pj} = 0 =
{
Qi, Qj

}
,
{
Pi, Q

j
}

= �ji
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the Poisson brackets are still given by a similar expression:

{f, g} =
∑
i

[
∂f

∂Pi

∂g

∂Qi
− ∂f

∂Qi
∂g

∂Pi

]
Such transformations are called canonical transformations; they are quite

useful in mechanics because they preserve the mathematical structure of me-
chanics. For example, Hamilton's equations remain true after a canonical trans-
formation:

dQi

dt
=
∂H

∂Pi

dPi
dt

= − ∂H
∂Qi

Example 19. The case of one degree of freedom. The interchange of
position and momentum variables is an example of a canonical transformation:

P = −q, Q = p

Notice the sign.
Another example is the scaling

Q = �q, P =
1

�
p

Notice the inverse powers. More generally, the condition for a transformation
(q, p) 7→ (Q,P ) to be canonical is that the area element dqdp be transformed to
dQdP . This is because in the case of one degree of freedom, the Poisson bracket
happens to be the Jacobian determinant:

{P,Q} ≡ ∂P

∂p

∂Q

∂q
− ∂Q

∂p

∂P

∂q
= det

[
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

]
For more degrees of freedom, is still true that the volume element in phase

space in invariant,
∏
i dq

idpi =
∏
i dQ

idPi ,under canonical transformations,
a result known as Liouville's theorem. But the invariance of the phase space
volume no longer guarantees that a transformation is canonical: the conditions
for that are stronger.

6.5 In�nitesimal canonical transformations

The composition of two canonical transformations is also a canonical transforma-
tion. Sometimes we can break up a canonical transformation as the compoistion
of in�nitesimal transformations. For example, the transformation

Q = �q, P = �−1p
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You can check that for every � this is a canonical transformation. A scaling
through �1 followed by another through �2 is equal to one by �1�2. Conversely,
we can think of a scaling through � = e� as made of up of a large number n of
scalings, each through a small value �

n .For an in�nitesimally small Δ�,

, ΔQ = qΔ�, ΔP = −pΔ�

These in�nitesimal changes of co-ordinates de�ne a vector �eld

V = q
∂

∂q
− p ∂

∂p

That is, the e�ect of an ini�nitesimal rotation on an arbitrary observable is

V f = q
∂f

∂q
− p∂f

∂p

Now, note that this can be written as

V f = {pq, f}

This is a particular case of a more general fact: every in�nitesimal canonical
transformation can be thought of as the Poisson bracket with some function,
called its generating function.

Let us write an in�nitesimal canonical transformation in terms of its com-
ponents

V = V i
∂

∂qi
+ Vi

∂

∂pi

The position of the indices is chosen that V i is the in�nitesimal change in
qi and Vi the change in pi.

qi 7→ Qi = qi + V iΔ�, pi 7→ Pi = pi + ViΔ�

for some in�nitesimal parameter Δ�. Let us calculate to �rst order in Δ�:{
Qi, Qj

}
=
({
V i, qj

}
+
{
qi, V j

})
Δ�

{Pi, Pj} = ({Vi, pj}+ {pi, Vj}) Δ�

{
Pi, Q

j
}

= �ji +
({
Vi, q

j
}

+
{
pi, V

j
})

Δ�

So the conditions for V to be an in�nitesimal canonical transformation are{
V i, qj

}
+
{
qi, V j

}
= 0,

{Vi, pj}+ {pi, Vj} = 0,
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{
Vi, q

j
}

+
{
pi, V

j
}

= 0.

In terms of partial derivatives

∂V i

∂pj
− ∂V j

∂pi
= 0

∂Vi
∂qj
− ∂Vj
∂qj

= 0

∂Vi
∂pj

+
∂V j

∂qi
= 0 (6.1)

The above conditions are satis�ed if 3

V i =
∂G

∂pi
, Vi = −∂G

∂qi
(6.2)

for some function G . The proof is a straightforward computation of second
partial derivatives:

∂V i

∂pj
− ∂V j

∂pi
=

∂2G

∂pi∂pj
− ∂2G

∂pi∂pj
= 0

etc.
Conversely, if (6.5.1) implies (6.5.2), we can produce the required function

f as a line integral from the origin to the point (q, p) along some curve:

G(q, p) =

ˆ (q,p)

(0,0)

[
Vi
dqi

ds
− V i dpi

ds

]
ds

In general such integrals will depend on the path taken, not just the endpoint.
But the conditions (6.5.1) are exactly what is needed to ensure independence
on the path.4

Exercise 20. Prove this by varying the path in�nitesimally.

Thus an in�nitesimal canonical transformation is the same as the Poisson
bracket with some function, called its generator. By composing such in�nitesi-
mal transformations, we get a curve in the phase space:

dqi

d�
=
{
G, qi

}
,

dpi
d�

= {G, pi}

Now we see that Hamilton's equations are just a special case of this. Time
evolution is a canonical transformation too, whose generator is the hamiltonian.

3There is an analogy with the condition that the curl of a vector �eld is zero; such a vector

�eld would be the gradient of a scalar.
4We are assuming that any two curves connecting the origin to (q, p) can be deformed

continuously into each other. In topology, the result we are using is called the Poincare

lemma.
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Every observable (i.e., function on phase space) generates its own canonical
transformation.

Example 21. A momentum variable generates translations in its conjugate
position variable.

Example 22. The generator of rotations is angular momentum along the axis
of rotation. For a rotation around the zaxis

x 7→ cos �x− sin �y, y 7→ sin �x+ cos �y

px 7→ cos �px + sin �py, py 7→ − sin �px + cos �py

So we have

dx

d�
= −y, dy

d�
= x

dpx
d�

= py,
dpy
d�

= −px

The generator is

Lz = xpy − ypx

6.6 Symmetries and Conservation Laws

Suppose that the Hamiltonian is independent of a certain co-ordinate qi; then
the corresponding momentum is conserved.

∂H

∂qi
= 0 =⇒ dpi

dt
= 0.

This is the beginning of a much deeper theorem of Noether that asserts
that every continuous symmetry implies a conservation law. A symmetry is
any canonical transformation of the variables (qi, pi) 7→ (Qi, Pi) that leaves the
hamiltonian unchanged:

{Pi, Pj} = 0 =
{
Qi, Qj

}
,
{
Pi, Q

j
}

= �ji

H(Q(q, p), P (q, p)) = H(q, p)

A continuous symmetry is one that can be built up as a composition of
in�nitesimal transformations. We saw that every such canonical transformation
is generated by some observable G. The change of any other observable f under
this canonical transformation is given by

{G, f}



CHAPTER 6. HAMILTON'S PRINCIPLE 46

In particular the condition that the hamiltonian be unchanged is

{G,H} = 0.

But we saw earlier that the change of G under a time evolution is

dG

dt
= {H,G}

So, the invariance of Hunder the canonical transformation generated by G
is equivalent to the condition that Gis conserved under time evolution.

dG

dt
= 0 ⇐⇒ {G,H} = 0.

Example 23. Let us return to the Kepler problem H = p2

2m + V (r), where
V (r) is a function only of the distance ∣r∣. The components Lx, Ly, Lz of angular
momentum

L = r× p

generate rotations around the axes x, y, z respectively. Since the hamiltonian
is invariant under rotations

{L, H} = 0

Thus the three components of angular momentum are conserved:

dL

dt
= 0.

This fact can also be veri�ed directly as we did before.

Exercise 24. Show that the hamiltonian of the Kepler problem in spherical
polar co-ordinates is

H =
p2
r

2m
+

L2

2mr2
− k

r
, L2 = p2

� +
p2
�

sin2 �

Show that L is the magnitude of angular momentum and that p� = Lz is
one of its components. Thus, show that

{
L2, Lz

}
= 0 =

{
H,L2

}
.



Chapter 7

Geodesics

A basic problem in geomety is to �nd the curve of shortest length that passes
through two given points. Such curves are called geodesics. On the plane this
is a straightline. But if we look at some other surface, such as the sphere the
answer is more intricate. Gauss developed a general theory for geodesics on
surfaces. Riemann then generalized it to higher dimensions. With the discov-
ery of relativity it became clear that space and time are to be treated on the
same footing. Einstein discovered that the Riemannian geometry of space-time
provides a relativistic theory of gravitation. The theory of geodesics can be
thought of a hamiltonian system, and ideas from mechanics are useful to un-
derstand properties of geodesics. Also, geometry is essential to understand the
motion of particles in a gravitational �eld. In another direction, it turns out
that the motion of even non-relativistic particles of a given energy in a potential
can be understood as geodesics of a certain metric (Maupertuis metric). Thus
no study of mechanics is complete without a theory of geodesics.

7.1 The Metric

Let xi for i = 1, ⋅ ⋅ ⋅n be the co-ordinates on some space. In Riemannian geom-
etry, the distance ds between two nearby points xi and xi + dxi is postulated
to be a quadratic form1

ds2 = gij(x)dxidx�j

For Cartesian co-ordinates in Euclidean space, gij are constants,

ds2 =
∑
i

[
dxi
]2
, gij = �ij .

1It isa convention in geometry to place the indices on co-ordinates above, as superscripts.

Repeated indices are summed over. Thus gij(x)dx
idxj stands for

∑
ij gij(x)dx

idx�j . For this
to make sense, you have to make sure that no index occurs more than twice in any factor.

47
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The matrix gij(x) is called the metric. The metric must be a symmetric
matrix with an inverse. The inverse is denoted by gij , with superscripts. Thus

gijgjk = �ik.

Although Riemann only allowed for positive metrics, we now know that the
metric of space-time is not positive: along the time-like directions, ds2 is positive
and along space-like directions it is negative.

7.2 The Variational Principle

A curve is given parametrically by a set of functions xi(�) of some real param-
eter. The length of this curve will be

l[x] =

ˆ √
gij(x)

dxi

d�

dx�j

d�
d�

This is the quantity to be minimized, if we are to get an equation for
geodesics. But it is simpler (and turns out to be equvalent) to minimize in-
stead the related quantity

S =
1

2

ˆ
gij(x)

dxi

d�

dxj

d�
d�

If we look at a �nite sum instead of an integral, 1
2

∑
x2
a and

∑
∣xa∣ are

minimized by the same choice of xa. But x
2
a is a much nicer quantity than ∣xa∣

: for example, it is di�erentiable. Similarly, S is a more convenient quantity to
di�erentiate.

7.2.1 Curves minimizing the action and the length are the

same

This can be proved using a trick using Lagrange multipliers. First of all, we
note that the length can be thought of the minimum of

S1 =
1

2

[ˆ
gij
dxi

d�

dxj

d�
�−1d� +

ˆ
�d�

]
over all non-zero functions �. Minimizing gives �−2∣ẋ∣2 = 1 =⇒ � = ∣ẋ∣.

At this minimum S1[x] = l[x]. Now S1 is invariant under changes of parameters

� → � ′(�), �′ = �
d�

d� ′

Choosing this parameter to be the arc length, S1 reduces to the action.
Thus they describe equivalent variational problems. Moreover, at the minimum
S, S1, l all agree.
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7.2.2 The Geodesic Equation

This leads to a di�erential equation

d

d�

[
gij
dxj

d�

]
− 1

2
∂igjk

dxj

d�

dxk

d�
= 0.

Straightforward application of the Euler-Lagrange equation

d

d�

∂L

∂ẋi
− ∂L

∂xi
= 0

with Lagrangian

L =
1

2
gjkẋ

j ẋk

∂L

∂ẋi
= gij ẋ

j

An equivalent formulation is

d2xi

d�2
+ Γijk

dxj

d�

dxk

d�
= 0, Γijk =

1

2
gil [∂jgkl + ∂kgjl − ∂lgjk]

The Γijk are called Christo�el symbols. Calculating them for some given
metric is one of the joys of Riemannian geometry; an even greater joy is to get
someone else to do the calculation for you.

Proposition 25. Given an initial point P and a vector V at that point, there

is a geodesic that starts at P with V as its tangent

This just follows from standard theorems about the local existence of so-
lutions of ODEs. The behavior for large � can be complicated: geodesics are
chaotic except for metrics with a high degree of symmetry.

Remark 26. The following are more advanced points that you will understand
only during a second reading , or after you have already learned some Rieman-
nian geometry.

Proposition 27. On a connected manifold, any pair of points are connected by

at least one geodesic

Connected means that there is a continuous curve connecting any pair of
points (to de�ne these ideas precisely we wil need �rst a de�nition of a manifold,
which we will postpone for the moment). Typically there are several geodesics
connecting a pair of points, for example on the sphere there are at least two for
every (unequal) pair of points: one direct route and that goes around the world.

Proposition 28. The shortest length of all the geodesics connecting a pair of

points is the distance between them
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It is a deep result that such a minimizing geodesic exists. Most geodesics
are extrema.

Gauss and Riemann realized that only experiments can determine whether
space is Euclidean. They even commissioned an experinent to look for depar-
tures from Euclidean geometry; and found none. The correct idea turned out
to be to include time as well.

7.3 The Sphere

The geometry of the sphere was studied by the ancients There were two spheres
of interest to astronomers: the surface of the Earth and the celestial sphere, upon
which we see the stars. Eratosthenes (3rd century BC) is said to have invented
the use of the latitude and longitude as co-ordinates on the sphere. The (6th
century AD) Sanskrit treatise Aryabhatiya, uses this co-ordinate system for the
sphere as well (with the city of Ujjaini on the prime meridian) in solving several
problems of spherical geometry. Predicting sunrise and sunset times, eclipses,
calculating time based on the length of the shadow of a rod, making tables of
positions of stars, are all intricate geometric problems.

The metric of a sphere S2 in polar co-ordinates is

ds2 = d�2 + sin2 �d�2

We just have to hold r constant in the expression for distance in R3 in
polar co-ordinates. The sphere was the �rst example of a curved space.There
are no straightlines on a sphere: any straightline of R3 starting at a point
in S2 will leave it. There are other subspaces of R3 such as the cylinder or
the cone which contain some straightlines. The question arises: what is the
shortest line that connects two points on the sphere? Such questions were of
much interest to map makers of the nineteenth century, an era when the whole
globe was being explored. In the mid nineteenth century Gauss took up the
study of the geometry of distances on curved surfaces metrics which was later
generalized by Riemann to higher dimensions. Einstein realized a variant of
Riemannian geometry, allowing for ds2to be negative or zero as well, is the
basis of a relativistic theory of gravity. For technical reasons, we will study a
slightly di�erent function than the length of a curve.

The action of a curve on the sphere is de�ned to be

S =
1

2

ˆ [
�̇2 + sin2 ��̇2

]
d�

Note that this is not quite the same thing as the length of the curve:

l =

ˆ [
�̇2 + sin2 ��̇2

] 1
2

d�
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It turns out that S is a simpler function on the space of curves than l .
This is similar to the fact that x2 is a di�erentiable function while ∣x∣ is not.(Its
derivative has a jump discontinuity at the origin.) But the same curves minimize
S and l . (Again, both x2 and ∣x∣ are minimized at x = 0. )

Remark 29. Some mathematicians, making a confused analogy with mechanics,
call S the `energy' of the curve instead of its action.

This de�nition of a geodesic does not require it to be a minimum of the
action or of distance: in fact many interesting geodesics are saddle points of S
. The Euler-Lagrange equations of this variational principle give

�S =

ˆ [
�̇��̇ + sin � cos ��̇2�� + sin2 ��̇��̇

]
d�

−�̈ + sin � cos ��̇2 = 0

d

d�

[
sin2 ��̇

]
= 0

The key to solving any system of ODEs is to identify conserved quantities.
The obvious conserved quantity is

L = sin2 ��̇

The solution is simplest when L = 0 . For these geodesics, �is a constant.
Then � is a linear function of �. These are the lines of meridian of constant longi-
tude. They are also called great circles. Geometrically they are the intersection
of a plane passing through the center of the circle with the circle itself.

Proposition 30. Any pair of points on the circle lie on such a great circle.

Thus geodesics are the same as arcs of great circles.

Using the symmetry of the sphare under rotations, we can always choose a
co-ordinate system such that the two points lie along a longitude. So we don't
actually have to solve the di�erential equations to see this fact. But if we have
to �nd the equation of a geodesic with a given choice of axes,

It is possible to solve the equations for any value of L

−�̈ +
cos �L2

sin3 �
= 0

Multiply by �̇ and integrate once to get

1

2
�̇2 +

L2

2 sin2 �
= E

another constant of motion. Solving

�̇ =

√
2E − L2

sin2 �
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� =

ˆ
d�√

2E − L2

sin2 �

which can be evaluated in terms of trig functions.

Corollary 31. The equator is a geodesic.

Corollary 32. We can form a triangle with geodesics as sides, all of whose

interior angles are right angles

Start at the North Pole; go down to the equator along a meridian; go along
the equator for a quarter of the circumference; then move along the meridian
back to the North Pole.

In Euclidean geometry, the sum of the interior angles must be �. In spherical
geometry, it depends on the area enclosed by the sides.A small geodesic triangle
will have angles adding up to � as in Euclidean geometry. For small distances,
geodesics appear to be straightlines and the sphere looks �at. This is why people
thought the Earth was �at in olden days.

Gauss found the correct measure of the curvature of a surface whose metric
is given

ds2 = g��dx
�dx� .

7.3.1 The sphere can also be identi�ed with the complex

plane, with the point at in�nity added

Identify the complex plane with the tangent plane to the sphere at the South
plane. Given a point on the sphere, we can draw a straight line in R3 that
connects the North pole to that line: continuing that line, we get a point on the
complex plane. This is the co-ordinate of the point. Thus the South pole is at
the origin and the North point corresponds to in�nity.

The metric of S2 is

ds2 = 4
dz̄dz

(1 + z̄z)2
, z = tan

�

2
ei�

The isometries of the sphere are fractional linear transformations by SU(2)

z 7→ az + b

cz + d
,

(
a b
c d

)(
ā c̄
b̄ d̄

)
=

(
1 0
0 1

)
Problem 33. Verify by direct calculations that these leave the metric un-
changed.

This is one way of seeing that SU(2)/ {1,−1} is the group of rotations.
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7.4 Hyperbolic Space

The metric of hyperbolic geometry is

ds2 = d�2 + sinh2 �d�2

It describes a space of negative curvature. What this means is that two
geodesics that start at the same point in slightly di�erent directions will move
apart at a rate faster than in Euclidean space. On a sphere, they move apart
slower than in Euclidean space so it has positive curvature. Just as the sphere
is the set of points at a unite distance from the center,

Proposition 34. The hyperboloid is the set of unit time-like vectors in Minkowski

geometry R1.2

There is the co-ordinate system analogous to the spherical polar co-ordinate
system valid in the time-like interior of the light cone:

(x0)2−(x1)2−(x2)2 = �, x0 = � cosh �, x1 = � sinh � cos�, x2 = � sinh � sin�

The Minkowski metric becomes

ds2 = d�2 − �2
[
d�2 + sinh2 �d�2

]
Thus the metric induced on the unit hyperboloid

(x0)2 − (x1)2 − (x2)2 = �,

is the one above.

Proposition 35. The hyperboloid can also be thought of as the upper half plane

with the metric

ds2 =
dx2 + dy2

y2
, y > 0

Proposition 36. The isometries are fractional linear transformations with real
parameters a, b, c, d:

z 7→ az + b

cz + d
, ad− bc = 1

Problem 37. Verify that these are symmetries of the metric.

Proposition 38. The geodesics are circles orthogonal to the real line.

If two points have the same value of x, the geodesic is just the line parallel to
the imaginary axis that contains them. Using the isometry above we can bring
any pair of points to this con�guration. It is also possible to solve the geodesic
equations to see this fact.
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Proposition 39. The hyperboloid can also be thought of as the interior of the

unit disk

ds2 =
dzdz̄

(1− z̄z)2
, z̄z < 1

Problem 40. What are the geodesics in this description?

7.5 Hamiltonian Formulation of Geodesics

The analogy with mechanics is clear in the variational principle of geometry.
The Lagrangian

L =
1

2
gij
dxi

d�

dxj

d�

leads to the �momenta�

pi = gij
dxj

d�

The hamiltonian is

H = pi
dxi

d�
− L

=
1

2
gijpipj .

Thus H has the physical meaning of half the square of the mass of the
particle.

It follows that the geodesic equations can be written as

pi = gij
dxj

d�
,

d

d�
pi =

1

2
[∂ig

jk]pjpk

It is obvious from mechanics that if the metric happens to be independent of
a co-ordinate, its conjugate momentum is conserved. This can be used to solve
equations for a geodesic on spaces like the sphere which have such symmetries.

A better way point of view is to use the Hamilton-Jacobi equation, a �rst
order PDE. When this equation is separable, the geodesics can be determined
explicitlty.

7.6 Geodesic Formulation of Newtonian Mechan-

ics

In the other direction, there is a way to think of the motion of a particle in
a potential with a �xed energy as geodesics. Suppose we have a particle (or
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collection of particles) whose kinetic energy is given by a quadratic function of
co-ordinates

T =
1

2
mij(q)

dqi

dt

dqj

dt

For example, in the three body problem of celestial mechanics, i, j takes
values 1 through 9: the �rst three for the position of the �rst particle and so on.
Then the metric is a constant matrix whose diagonal entries are the masses:

mij =

⎡⎣ m113 0 0
0 m213 0
0 0 m313

⎤⎦
The �rst 3 × 3 block gives the kinetic energy of the �rst particle, the next

that of the second particle and so on.
If the potential energy is V (x) we have the condition for the conservation of

energy

1

2
mij(q)

dqi

dt

dqj

dt
+ V (q) = E

If we only consider paths of a given energy E, Hamilton's principle takes the
form of minimizing

S =

ˆ t2

t1

pi
dqi

dt
dt

since
´
Hdt = E[t2−t1] is constant. Solving for pi in terms of q̇i this becomes

S =

ˆ
[E − V (q)]mij(q)

dqi

ds

dqj

ds
ds

where the parameter ds is de�ned by

ds

dt
= [E − V (q)]

This can be thought of as the variational principle for geodesics of the metric

gij = 2[E − V (q)]mij(q)dq
idqj

Of course, this only makes sense in the region of space with E > V (q): that
is the only part that is accessible to a particle of total energy E. This version
of the variational principle is older than Hamilton's and is due to Euler who
was building on ideas of Fermat and Maupartius in ray optics. Nowadays it is
known as the Maupertuis principle.
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7.6.1 Keplerian Orbits As Geodesics

Consider the planar Kepler problem with Hamiltonian

H =
p2
r

2
+

p2
�

2r2
− k

r

The orbits of this system can be thought of as geodesic of the metric

ds2 = 2

[
E +

k

r

] [
dr2 + r2d�2

]
There is no singularity in this metric at the collision point r = 0: it can be

removed (�regularized�) by transforming to the co-ordinates �, �:

r = �2, � = 2�, =⇒ ds2 = ds2 = 8
[
E�2 + k

] [
d�2 + �2d�2

]
This is just what we would have found for the harmonic oscillator (for E < 0):

the Kepler problem can be transformed by a change of variables to the harmonic
oscillator.

When E = 0 (parabolic orbits) this is just the �at metric on the plane:
parabola are mapped to straightlines by the above change of variables. For
E > 0 (hyperbolic orbits) we get a metric of negative curvature and for E < 0
(elliptic orbits) one of positive curvature. These curvatures are not constant,
however.

7.7 Geodesics in General Relativity

By far the most important application of Riemannian geometry to physics is
General Relativity, Einstein's theory of gravitation. The gravitational �eld is
described by the metric tensor of space-time.

The path of a particle is given by the geodesics of this metric. Of special
importance is the metric of a spehrically symmetric mass distribution, called
the Schwarschild metric.

ds2 =
(

1− rs
r

)
dt2 − dr2

1− rs
r

− r2
(
d�2 + sin2 �d�2

)
The parameter rs is proportional to the mass of the source of the gravita-

tional �eld. For the Sun it is about 1 km. To solve any mechanical problem
we must exploit conservation laws. Often symmetries provide clues to these
conservation laws.

A time-like geodesic satis�es(
1− rs

r

)
ṫ2 − ṙ2

1− rs
r

− r2
(
�̇2 + sin2 ��̇2

)
= H
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Here the dot denotes derivatives w.r.t. � . The constant H has to be positive;
it can be chosen to be one by a choice of units of �.

Proposition 41. Translations in t and rotations are symmetries of the Schwarschild
metric

The angular dependence is the same as for the Minkwoski metric. The
invariance under translations in t is obvious

Corollary 42. Thus the energy and angular momentum of a particle moving

in this gravitational �eld are conserved

The translation in t gives the conservation of energy per unit mass

E = pt =
(

1− rs
r

)
ṫ

We can choose co-ordinates such that the geodesic lies in the plane � = �
2 .

By looking at the second component of the geodesic equation

d

d�

[
r2 d�

d�

]
= r2 sin � cos �

[
d�

d�

]2

We can rotate the co-ordinate system so that any plane passing through the
center corresponds to � = �

2 .The conservation of angular momentum, which is a
3-vector, implies also that the orbit lies in the plane normal to it.We are simply
choosing the z− axis to point along the angular momentum.Thus(

1− rs
r

)
ṫ2 − ṙ2

1− rs
r

− r2�̇2 = H

Rotations in � lead to the conservation of the third component of angular
momentum per unit mass

L = −p� = r2�̇.

This is an analogue of Kepler's law of areas. To determine the shape of the
orbit we must detemine r as a function of �

In the Newtonian limit these are conic sections: ellipse, parabola or hyper-
bola. Let u = rs

r .Then

ṙ = r′�̇ =
r′

r2
L = −lu′.

Here prime denotes derivative w.r.t. �. Also l = L
rs
. So ,

E2

1− u
− l2u′2

1− u
− l2u2 = H

We get an ODE for the orbit

l2u′2 = E2 +H(u− 1)− l2u2 + l2u3
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This is the Weierstrass equation, solved by the elliptic integral . Since we are
interested in the case where the last term (which is the GR correction) is small
a di�erent strategy is more convenient. Di�erentiate the equation to eliminate
the constants:

u′′ + u =
H

2l2
+

3

2
u2

Proposition 43. In the Newtonian approximation the orbit is periodic.

The Newtonian approximation is

u′′0 + u0 =
H

2l2
=⇒

u0 =
H

2l2
+B sin�

for some constant of integration B. Recall the equation for an ellipse in
polar co-ordinates

1

r
=

1

b
+
�

b
sin�

Here, � is the eccentricity of the ellipse: if it is zero the equation is that
of a circle of radius b. In general b is the semi-latus rectum of the ellipse. If
1 > � > 0 , the closest and farthest approach to the origin are at 1

r1,2
= 1

b ±
�
b

so that the major axis is r2 + r1 = 2b
1−�2 . So now we know the meaning of l and

B in terms of the Newtonian orbital parameters.

b = 2rsl
2, B =

�

b
rs

7.7.1 The Perihelion Shift

Putting
u = u0 + u1

to �rst order (we choose units with H = 1 for convenience)

u′′1 + u1 =
3

2
u2

0

=
3

8l4
+

3B

2l2
sin�+

3

2
B2 sin2 �

u′′1 + u1 =
3

8l4
+

3

4
B2 + 3

B

2l2
sin�− 3

4
B2 cos 2�

Although the driving terms are periodic, the solution is not periodic,because
of the resonant term sin� in the r.h.s.

u1 = periodic + constant� sin�
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Proposition 44. In GR the orbit is not closed.

Thus GR predicts that as a planet returns to the perihelion its angle has
su�ered a net shift. After rewriting B, l, rs,in terms of the parameters a, �, T of
the orbit, the perihelion shift is found to be

24�2a2

(1− �2)c2T 2

where a is the semi-major axis and T is the period of the orbit.

Exercise 45. Express the period of u(�) in terms of a complete elliptic integral
and hence the Arithmetic Geometric Mean. Use this to get the perihelion shift
in terms of the AGM.

This perihelion shift agrees with the measured anomaly in the orbit of Mer-
cury

At the time Einstein proposed his theory, such a shift in the perihelion
of Mercury was already known-and unexplained- for a hundred years! The
prediction of GR, 43′′ of arc per century, exactly agreed with the observation:
its �rst experimental test. For the Earth the shift of the perihelion is even
smaller: 3.8′′ of arc per century. Much greater accuracy has been possible in
determining the orbit of the Moon through laser ranging. The resuls are a
quantitative vindication of GR to high precision.



Chapter 8

Hamilton-Jacobi Theory

We saw that the formulation of classical mechanics in terms of Poisson brackets
allows a passage into quantum mechanics: the Poisson bracket measures the
in�nitesimal departure from commutativity of observables. There is also a for-
mulation of mechanics that is connected to the Schrodinger form of quantum
mechanics. Hamiltonon discovered this originally through the analogy with op-
tics. In the limit of small wavelength, the wave equation (which is a second
order linear PDE) becomes a �rst order (but nonlinear) equation, called the
eikonal equation. Hamilton and Jacobi found an analogous point of in mechan-
ics. In modern language, it is the short wavelength limit of Schrodinger's wave
equation.

Apart fom its conceptual value in connection with quantum mechanics, the
Hamilton-Jacobi equation also provides powerful technical tools for solving prob-
lems of classical mechanics.

8.1 Conjugate Variables

Recall that we got the Euler-Lagrange equations by minimizing the action

S =

ˆ t2

t1

L(q, q̇)dt

over paths with �xed endpoints. It is interesting also to hold the initial point
�xed and ask how the action varies as a function of the endpoint. Let us change
notation slightly and call the end time t , and the variable of integration � .
Also let us call q(t) = q, the ending position.

S(t, q) =

ˆ t

t1

L(q(�), q̇(�)d�

From the de�nition of the integral, we see that

dS

dt
= L
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But,

dS

dt
=
∂S

∂t
+
∂S

∂qi
q̇i

so that

∂S

∂t
= L− ∂S

∂qi
q̇i

If we vary the path

�S =

[
∂L

∂q̇i
�qi
]t
t1

−
ˆ t

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
dt

In deriving the E-L equations we could ignore the �rst term because th
evariation vanished at the endpoints. But looking at the dependence on the
ending position, and recalling that ∂L

∂q̇i = pi, we get

∂S

∂qi
= pi

Thus,

∂S

∂t
= L− piq̇i

In other words

∂S

∂t
= −H.

So we see that the �nal values of the variables conjugate to t, qi are given
by the derivatives of S.

8.2 The Hamilton-Jacobi Equation

This allows us rewrite content of the action principle as a partial di�erential
equation: we replace pi by

∂S
∂qi in the hamiltonian to get

∂S

∂t
+H

(
q,
∂S

∂q

)
= 0.

Example 46. For the free particle H = p2

2m and

∂S

∂t
+

1

2m

(
∂S

∂q

)2

= 0

A solution to this equation is

S(t, q) = −Et+ pq
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for a pair of constants E, p satisfying

E =
p2

2m
.

Thus, the solution to the H-J equation in this case is a sum of terms each de-
pending only one of the variables: it is separable. Whenever the H-J equation
can be solved by such a separation of variables, we can decompose the motion
into one dimensional motions, each of which can be solved separately.

Example 47. The planar Kepler Problem can be solved by separation of vari-
ables as well. In polar co-ordinates

H =
p2
r

2m
+

p2
�

2mr2
− k

r

so that the H-J equation is

∂S

∂t
+

1

2m

[
∂S

∂r

]2

+
1

2mr2

[
∂S

∂�

]2

− k

r
= 0

Since t, � do not appear explicitly (i.e., they are cyclic variables), their
conjugates can be assumed to be constants. So we make the ansatz

S(t, r, �, �) = −Et+R(r) + L�

yielding

1

2m

[
dR

dr

]2

+
L2

2mr2
− k

r
= E

Exercise 48. Show that the H-J equation can be solved by separation of vari-
ables

S(t, r, �, �) = T (t) +R(r) + Θ(�) + Φ(�)

in spherical polar co-ordinates for any potential of the form V (r, �, �) =

a(r) + b(�)
r2 + c(�)

r2 sin2 �
. The Kepler problem is a special case of this.

8.3 The Euler Problem

Euler solved many problems in mechanics. One of them was the motion of a
body under the in�uence of the gravitational �eld of two �xed bodies. This
does not occur in astronomy, as the two bodies will themselves have to move
under each others gravitational �eld. But centuries later, exactly this problem
occured in studying the molecular ion H+

2 : an electron orbiting two protons
at �xed positions. Heisenberg dusted o� Euler's old method and solved its
Schrodinger equation: the only exact solution of a molecule.

The trick is to use a generalization of polar co-ordinates, in which the curves
of constant radii are ellipses instead of circles. Place the two �xed masses at
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points ±� along the z− axis. If r1 and r2 are distances of a point from these
points, the potential is

V =
�1

r1
+
�2

r2
.

with

r1,2 =

√
(z ∓ �)

2
+ x2 + y2

We can use � = r1+r2
2� , � = r2−r1

2� as co-ordinates.

Exercise 49. Note that ∣�∣ ≥ 1 while ∣�∣ ≤ 1. What are the surfaces where �
is a constant and where � is a constant?

As the third co-ordinate we can use the angle � of the cylindrical polar
system:

x = �
√

(�2 − 1)(1− �2) cos�, y = �
√

(�2 − 1)(1− �2) sin�, z = ���

This is an orthogonal co-ordinate system; i.e., the metric is diagonal:

ds2 = �2(�2 − �2)

[
d�2

�2 − 1
+

d�2

1− �2

]
+ �2(�2 − 1)(1− �2)d�2

Exercise 50. Prove this form of the metric. It is useful to start with the metric
in cylindrical polar cordinates ds2 = d�2 + �2d�2 + dz2 and make the change of
variables � = �

√
(�2 − 1)(1− �2) and z as above.

Now the Lagrangian is

L =
1

2
m�2(�2 − �2)

[
�̇2

�2 − 1
+

�̇2

1− �2

]
+

1

2
m�2(�2 − 1)(1− �2)�̇2 − V (�, �)

leading to the hamiltonian

H =
1

2m�2(�2 − �2)

[
(�2 − 1)p2

� + (1− �2)p2
� +

(
1

�2 − 1
+

1

1− �2

)
p2
�

]
+V (�, �)

and the H-J equation

E =
1

2m�2(�2 − �2)

[
(�2 − 1)

(
∂S

∂�

)2

+ (1− �2)

(
∂S

∂�

)2

+

(
1

�2 − 1
+

1

1− �2

)(
∂S

∂�

)2
]

+V (�, �)

The potential can be written as

V (�, �) = − 1

�

{
�1

� − �
+

�2

� + �

}
=

1

�(�2 − �2)
{(�1 + �2)� + (�1 − �2)�}
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Since � is cyclic we set ∂S
∂� = L a constant: it is the angular momentum

around the axis connecting the two �xed bodies. The H-J equation becomes

2m�2(�2−�2)E = (�2−1)

(
∂S

∂�

)2

+2m�(�1+�2)�+
L2

�2 − 1
+(1−�2)

(
∂S

∂�

)2

+2m�(�1−�2)�+
L2

1− �2

or

{
(�2 − 1)

(
∂S

∂�

)2

+ 2m�(�1 + �2)� +
L2

�2 − 1
+ 2mE�2(�2 − 1)

}
+

{
(1− �2)

(
∂S

∂�

)2

+ 2m�(�1 − �2)� +
L2

1− �2
+ 2mE�2(1− �2)

}
= 0.

This suggests the separation of variables

S = A(�) +B(�)

where each satis�es the ODE

(�2 − 1)A′2 + 2m�(�1 + �2)� +
L2

�2 − 1
+ 2mE�2(�2 − 1) = K

(1− �2)B′2 + 2m�(�1 − �2)� +
L2

1− �2
+ 2mE�2(1− �2) = −K

The solutions are elliptic integrals.

8.4 The Classical Limit of the Schrodinger Equa-

tion

Recall that the Schrodinger equation of a particle in a potential is

− ℏ2

2m
∇2 + V  = iℏ

∂ 

∂t
In the limit of small ℏ (i.e., when quantum e�ects are small) this reduces to the

H-J equation. The idea is to make the change of variables

 = e
i
ℏS

so that the the equation becomes

− iℏ
2m
∇2S +

1

2m
(∇S)2 + V +

∂S

∂t
= 0

If we ignore the �rst term we get the H-J equation.
Co-ordinate systems and potentials in which the H-J is separable also allow the

solution of the Schrodinger equation by separation of variables. A complete list is
given in Landau-Lifshitz Vols one and three.
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8.5 Hamilton-Jacobi Equation in Riemannian man-

ifolds

Given any metric ds2 = gijdq
idqj in con�guration space we have the Lagrangian

L =
1

2
mgijdq

idqj − V (q)

The momenta are

pi = mgij q̇
j

and the hamiltonian is

H =
1

2
gijpipj + V (q)

The Hamilton-Jacobi equation becomes, for a given energy

1

2m
gij

∂S

∂qi
∂S

∂qj
+ V = E

If the metric is diagonal, (�orthogonal co-ordinate system�) the inverse is
easier to calculate.

In the absence of a potential this becomes

gij
∂S

∂qi
∂S

∂qj
= constant

which is the H-J version of the geodesic equation.
Even when there is a potential, we can rewrite this as

g̃ij
∂S

∂qi
∂S

∂qj
= 1, g̃ij =

1

2m[E − V (q)]
.

Thus the motion of a particle in a potential can be thought of as geodesic
motion in an e�ective metric

ds̃2 = 2m[E − V (q)]gijdq
idqj

This is related to the Maupertuis principle we discussed earlier. Note that
only the classically allowed region E > V (q) is accessible to these geodesics.
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Integrable Systems

In quantum mechanics with a �nite dimensional number of states, the hamiltonian
is a hermitian matrix. It can be diagonalized by a unitary transformation. The ana-
logue in classical physics is a canonical transformation that brings the hamiltonian
to normal form: so that it depends only on variables Pi that commute with each
other. In this form hamilton's equations are trivial to solve:

dQi

dt
=
∂H

∂Pi
,

dPi
dt

= 0, i = 1, ⋅ ⋅ ⋅n.

Pi(t) = Pi(0), Qi(t) = Qi(0) + !it, !i =
∂H

∂Pi

Thus, the whole problem of solving the equations of motion amounts to �nding
such a canonical transformation. The position variables Qi are often (not always)
periodic and so are called �angle� variables. By convention, we normalize them so
that the periods are all equal to 2�. Their conjugates Pi (on which the hamiltonian
depends) have the meaning of the action of a closed path (when the system goes
around one period of Qi) so they were called the �action� variables. In modern
parlance, the Qi variables are co-ordinates on a torus embedded in phase space,
when they are periodic. Every initital condition lies on some torus and time evolution
keeps it on this torus: thus the tori are invariant under time evolution.

In the early days of mechanics, it was believed that every system can be brought
to normal form. For example, you could expand around a stable �xed point in a
power series and bring the hamiltonian to normal form order by order. Only after the
development of modern analysis, it was realized that there is a catch: the in�nite
series may not converge. There are only a handful of systems for which a reduction
to normal is possible. These are called integrable systems.

Nevertheless, a less ambitious form of the original idea survives in the modern
theory. If the hamiltonian is a small perturbation from an integrable system, some
of the tori continue to be preserved under time evolution. But inside these there
will be regions in the phase space where the dynamics is not con�ned to any torus:
the system will wander around �lling all 2n dimensions. Such chaotic regions might
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contain islands of invariant tori , which in turn contain chaotic regions and so on:
a kind of fractal structure in phase space.

This explains the co-existence of stability and chaotic behavior in the solar sys-
tem: the planets are in very predictable orbits while asteroids and the particles in
the rings of Saturn are not.

There is a similar catch in the idea that every quantum mechanical hamilto-
nian can be diagonalized. We still don't know enough functional analysis to state
precisely the di�erence between the integrable and chaotic quantum systems, when
the quantum Hilbert space is in�nite dimensional. Unravelling this distinction be-
tween the solvable and unsolvable in quantum mechanics is one of the frontiers of
contemporary physics. At this time, the best we can do is to work out examples
at the edge of this frontier and work towards a more general theory. This is the
quantum analogue of the work of astronomers in the nineteenth century, such as
Hill's theory of the Moon. Instead of astronomy, it is condensed matter systems
(quantum dots, arti�cial atoms, nano-materials) that are giving us examples. Unlike
in astronomy, we can manipulate these systems, so there is a good chance that in
the next generation, much of this mystery will be unravelled.

9.1 The Simple Harmonic Oscillator

This is the prototype of an integrable system. We choose units such that the mass
is equal to unity.

H =
p2

2
+

1

2
!2q2

The orbits are ellipses in phase space.

q(t) =

√
2H

!
cos!t, p(t) =

√
2H sin!t

This suggests that we choose as the position variable

Q = arctan
p

!q

since it evolves linearly in time.
Its conjugate variable is

P =
1

!

[
p2

2
+

1

2
!2q2

]
Exercise 51. Verify that {P,Q} = 1. Recall that the Poisson bracket is the
Jacobian determinant in two dimensions, so what you need to show is that
dpdq = dPdQ.

Solution One way to see this quickly is to recall that if we go from cartesion to
polar co-ordinates
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dxdy = d

[
r2

2

]
d�

Now put x = !q, y = p,Q = �.
Thus we can write the hamiltonian in normal form

H = !P.

9.2 The General One-Dimensional System

Consider now any hamiltonian system with one degree of freedom

H =
1

2m
p2 + V (q)

Assume for simplicity that the curves of constant energy are closed; i.e., that
the motion is periodic. Then we look for a co-ordinate system Q,P in the phase
space such that the period of Q is 2� and which is canonical

dpdq = dPdQ.

In this case the area enclosed by the orbit of a �xed value of P will be just
2�P . On the other hand, this area is just

¸
H
pdq over a curve constant energy in

the original co-ordinates (Stokes' theorem).Thus we see that

P =
1

2�

˛
H

pdq =
1

�

ˆ q2(H)

q1(H)

√
2m [H − V (q)]dq

where q1,2(H) are turning points; i.e., the roots of the equation H−V (q) = 0.
If we can evaluate this integral, we will get P as a function of H. Inverting this

function will give H as a function of P , which is its normal form. By comparing
with the H-J equation, we see that P is simply 1

2� times the change in the action
over one period of the q variable (i.e., from q1 to q2 and back again to q1):

1

2m

[
∂S

∂q

]2

+ V (q) = H, S(q) =

ˆ q

q1

√
2m[H − V (q)dq

This is why P is called the action variable.

9.3 Bohr-Sommerfeld Quantization

Once the hamiltonian is brought to normal form, there is a natural way to quantize
the system that explicitly displays its energy eigenvalues. The Schrodinger equation
becomes

H

(
−iℏ ∂

∂Q

)
 = E 
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The solutions is a �plane wave�

 = e
i
ℏPQ

If the Q-variables are angles (as in the SHO) with period 2� we must require
that P = ℏn for n = 0, 1, 2 ⋅ ⋅ ⋅ in order that the wave function is single-valued.
Thus the spectrum of the quantum hamiltonian is

En = H(ℏn).

In the case of the SHO we get this way

En = ℏ!n, n = 0, 1, ⋅ ⋅ ⋅

This is almost the exact answer we would get by solving the Schrodinger equation
in terms of q: only an additive constant 1

2ℏ! is missing.
Using the above formula for P , we see that the quantization rule for energy can

be expressed as

˛
pdq = 2�ℏn.

This is known as Bohr-Sommerfeld quantization and provides a semi-classical
approximation to the quantum spectrum. In some fortuitous cases (Such as the
SHO or the hydrogen atom) it gives almost the exact answer.

9.4 The Kepler Problem

We already know that p� and L
2 = p2

�+
p2�

sin2 �
(the component of angular momentum

in some direction, say z, and the total angular momentum) are a pair of commuting
conserved quantities. So this is a problem with just one degree of freedom.

H =
p2
r

2m
+

L2

2mr2
− k

r

To �nd the normal form we need to evaluate the integral

P =
1

�

ˆ r2

r1

√
2m

[
H − L2

2mr2
+
k

r

]
dr

between turning points. This is equal to (see below)

P = −L−
√

2mk

2
√
−H

Thus

H = − mk2

2(P + L)2
.
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Within the B-S approximation, the action variables P,L are both integers.
So the quantity P+L has to be an integer in the Bohr-Sommerfeld quantization:

it is the principal quantum number of the hydrogenic atom and the above formula
gives its famous spectrum. If we include the e�ects of special relativity, the spectum
depends on P,L separately, not just on the sum: this is the �ne structure of the
hydrogenic atom.

9.4.1 A Contour Integral

It is possible to evaluate the integral by trigonometric substitutions, but it is a mess.
Since we only want the integral between turning points, there is a trick involving
contour integrals. Consider the integral

¸
f(z)dz over a counter clockwise contour

of the function

f(z) =

√
Az2 +Bz + C

z
On the Riemann sphere, f(z)dz has a branch cut along the line connecting the

zeros of the quadratic under the square roots. It has a simple pole at the origin.
This integrand also has a pole at in�nity; this is clear if we transform to w = 1

z

√
Az2 +Bz + C

z
dz = −

√
Cw2 +Bw +A

w2
dw

The residue of the pole w = 0 is

− B

2
√
A
.

The integral
¸
f(z)dz over a contour that surrounds all of these singularities

must be zero: it can be shrunk to some point on the Riemann sphere. So the sum
of the residues on the two simple poles plus the integral of the discontinuity across
the branchcut must be zero:

2

ˆ z2

z1

√
Az2 +Bz + C

z
dz = 2�i

[√
C − B

2
√
A

]
With the choice

A = 2mH, B = 2mk, C = −L2

we get

ˆ r2

r1

√
2m

[
H − L2

2mr2
+
k

r

]
dr = i�

[√
−L2 − 2mk

2
√

(2mH)

]

= �

[
−L−

√
2mk

2
√
−H

]
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9.5 The Relativistic Kepler Problem

Sommerfeld worked out the e�ect of special relativity on the Kepler problem,
which explained the �ne structure of the Hydrogen atom within the Bohr model.
A similar calculatin can also be done for the General Relativistic problem, but
as yet it does not have a physical realization: gravitational e�ects are negligible
in the atom and quantum e�ects are so in planetary dynamics. We start with
the relation of momentum to energy in special relativity for a free particle:

p2
t − c2p2 = m2c4.

In the presence of an electrostatic potential this is modi�ed to

[pt − eV (r)]2 − c2p2 = m2c4

In spherical polar co-ordinates

[pt − eV (r)]2 − c2p2
r −

c2L2

r2
= m2c, L2 = p2

� +
p2
�

sin2 �
.

Since pt, L, p� are still commuting quantities this still reduces to a one-
dimensional problem. So we still de�ne

P =
1

2�

˛
prdr

as before. With the Coulomb potential eV (r) = −kr we again have a
quadratic equation for pr.The integral can be evaluated by contour method
again.

Exercise 52. Derive the relativistic formula for the spectrum of the hydrogen
atom by applying the Bohr-Sommerfeld quantization rule.

9.6 Several Degrees of Freedom

As long as the H-J equation is separable, there is a generalization of the above
procedure to a system with several degrees of freedom.

S =
∑
i

Si(qi)

H =
∑
i

Hi

(
qi,

∂Si
∂qi

)

Hi

(
qi,

∂Si
∂qi

)
+
∂Si
∂t

= 0.
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In essence, separation of variables breaks up the system into decoupled one
dimensional systems, each of which can be solved as above. This is essentially
what we did when we dealt with the Kepler problem above. The momentum
(�action') variables are the integrals

Pi =
1

2�

˛
pidqi

Exercise 53. Find the spectrum of the hydrogen molecular ion H+
2 within the

Bohr-Sommerfeld approximation. Use elliptic polar co-ordinates to separate the
H-J equation; express the action variables in terms of complete elliptic integrals.



Chapter 10

The Three Body Problem

Having solved the two body problem, Newton embarked on a solution of the
three body problem: the e�ect of the Sun on the orbit of the Moon. It de-
feated him. The work was continued by many generations of mathematical
astronomers: Euler, Lagrange, Airy,Hamilton, Jacobi, Hill, Poincare', Kol-
mogorov, Arnold, Moser..It still continues. The upshot is that it is not possible
to solve the system in �closed form�: more precisely that the solution is not a
real analytic funtion of time. But a solution valid for fairly long times was found
by perturbation theory around the two body solution: the series will eventu-
ally breakdown as it is only asymptotic and not convergent everywhere. There
are regions of phase space where it converges, but these regions interlace those
where it is divergent. The problem is that there are resonances whenever the
frequencies of the unperturbed solution are rational multiples of each other.

The most remarkable result in this subject is a special exact solution of
Lagrange: there is a stable solution in which the three bodies revolve around
their center of mass, keeping their positions at the vertices of an equilateral
triangle. This solution exists even when the masses are not equal: i.e., the
three-fold symmetry of the equilateral triangle holds even if the masses are not
equal! Lagrange thought that such special orbits would not appear in nature.
But we now know that Jupiter has captured some asteroids (Trojans) into such a
resonant orbit. Recently, it was found that the Earth also has such a co-traveller
at one of its Lagrange points.

The theory is mainly of mathematical (conceptual) interest these days as it
is easy to solve astronomical cases numerically. As the �rst example of a chaotic
system, the three body problem remains fascinating to mathematicians. New
facts are still being discovered. For example, Simo, Chenciner,Montgomery
found a solution (�choreography�) in which three bodies of equal mass follow
each other along a common orbit that has the shape of a �gure eight.
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10.1 Preliminaries

Let ra, for a = 1, 2 ⋅ ⋅ ⋅n be the positions of n bodies interacting through the
gravitational force. The Lagrangian is

L =
1

2

∑
a

maṙ
2
a − U, U = −

∑
a<b

Gmamb

∣ra − rb∣

Immediately we note the conservations laws of energy (Hamiltonian)

H =
∑
a

p2
a

2ma
+ U, pa = mṙa

total momentum

P =
∑
a

pa

and angular momentum

L =
∑
a

ra × pa.

10.1.1 Scale Invariance

Another symmetry is a scale invariance. If ra(t) is a solution, so is

�−
2
3 ra(�t).

Under this transformation,

pa → �
1
3 pa, H → �

2
3H, L→ �−

1
3 L

In the two body problem, this leads to Kepler's scaling law T 2 ∝ R3relating
period to the semi-major axis of the ellipse. There is no conserved quantity cor-
responding to this symmetry, as it does not leave the Poisson brackets invariant.
But it does lead to an interesting relation for the moment of inertia about the
center of mass

I =
1

2

∑
a

mar
2
a.

Clearly,

dI

dt
=
∑
a

ra ⋅ pa ≡ D

It is easily checked that

{D, ra} = ra, {D,pa} = −pa

So that
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{D,T} = −2T

for Kinetic energy and

{D,U} = −U

for potential energy. In other words

{D,H} = −2T − U = −2H + U

That is

dD

dt
= 2H − U

or

d2I

dt2
= 2H − U.

If the potential had been proportional to the inverse square distance (unlike
the Newtonian case) this would have said instead

Ï = 2H.

We wll return to this case later.

10.2 Jacobi Co-Ordinates

Recall that the Lagrangian of the two body problem

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − U(∣r1 − r2∣)

can be written as

L =
1

2
M1Ṙ

2
1 − U(∣R1∣) +

1

2
M2Ṙ

2
2

where

R1 = r2 − r1, R2 =
m1r1 +m2r2

m1 +m2
,

and

M1 =
m1m2

m1 +m2
, M2 = m1 +m2.

This separates the center of mass co-ordinate R2 from the relative co-
ordinate R1.

Jacobi found a generalization to three particles:
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R1 = r2 − r1, R2 = r3 −
m1r1 +m2r2

m1 +m2
, R3 =

m1r1 +m2r2 +m3r3

m1 +m2 +m3

R2 is the position of the third particle relative to the cm. of the �rst pair.
The advantage of this choice is that the kinetic energy

T =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 +

1

2
m3ṙ

2
3

remains diagonal (i..e., no terms such as Ṙ1 ⋅ Ṙ2):

T =
1

2
M1Ṙ

2
1 +

1

2
M2Ṙ

2
2 +

1

2
M3Ṙ

2
3

with

M1 =
m1m2

m1 +m2
, M2 =

(m1 +m2)m3

m1 +m2 +m3
, M3 = m1 +m2 +m3

Moreover

r2 − r3 = �1R1 −R2, r1 − r3 = −�2R1 −R2

with

�1 =
m1

m1 +m2
, �1 + �2 = 1.

This procedure has a genearlization to arbitrary number of bodies.

Exercise 54. The construction of Jacobi co-ordinates is an application of
Gram-Schmidt orthogonalization, a standard algorithm of linear algebra. Let

the mass matrix be m =

⎛⎝ m1 0 0
0 m2 0
0 0 m3

⎞⎠ . Starting with R1 = r2 − r1, �nd

a linear combination R2 such that RT
2 ⋅ mR1 = 0. Then �nd R3 such that

RT
3 mR1 = 0 = RT

3 mR1. Apply the linear transformation Ra = Labra to get
the reduced masses M = LTmL. Because of orthogonality, it will be diagonal

M =

⎛⎝ M1 0 0
0 M2 0
0 0 M3

⎞⎠
Thus, the Lagrangian of the three body problem with pairwise central po-

tentials

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 +

1

2
m3ṙ

2
3 −U12(∣r1 − r2∣)−U13(∣r1 − r3∣)−U23(∣r2 − r3∣)

becomes
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L =
1

2
M1Ṙ

2
1+

1

2
M2Ṙ

2
2−U12(∣R1∣)−U13(∣R2+�2R1∣)−U23(∣R2−�1R1∣)+

1

2
M3Ṙ

2
3

Again the c.m. co-ordinate R3 satis�es

R̈3 = 0

So we can pass to a reference frame in which it is at rest; and choose the
origin at the c.m.:

R3 = 0

Thus the lagrangian reduces to

L =
1

2
M1Ṙ

2
1 +

1

2
M2Ṙ

2
2 − U12(∣R1∣)− U13(∣R2 + �2R1∣)− U23(∣R2 − �1R1∣)

The Hamiltonian is

H =
P2

1

2M1
+

P2
2

2M2
+ U12(∣R1∣) + U13(∣R2 + �2R1∣) + U23(∣R2 − �1R1∣)

The total angular momentum

L = R1 ×P1 + R2 ×P2

is conserved as well.

10.2.1 Orbits as Geodesics

The Hamilton-Jacobi equation becomes

1

2M1

[
∂S

∂R1

]2

+
1

2M2

[
∂S

∂R2

]2

+U12(∣R1∣)+U13(∣R2+�2R1∣)+U23(∣R2−�1R1∣) = E

Or,

[E − {U12(∣R1∣) + U13(∣R2 + �2R1∣) + U23(∣R2 − �1R1∣)}]−1

{
1

2M1

[
∂S

∂R1

]2

+
1

2M2

[
∂S

∂R2

]2
}

= 1

This describes geodesics of the metric

ds2 = [E − {U12(∣R1∣) + U13(∣R2 + �2R1∣) + U23(∣R2 − �1R1∣)}]
{
M1dR

2
1 +M2dR

2
2

}
The curvature of this metric ought to give insights into the stability of the

three body problem. Much work can still be done in this direction.
In the special case E = 0, U(r) ∝ 1

r this metric has a scaling symmetry:
Ra → �Ra, ds

2 → �ds2. If E ∕= 0 we can use this symmetry to set E = ±1
thereby choosing a unit of time and space as well.
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10.3 The 1
r2 potential

If the potential were 1
r2 and not 1

r as in Newtonian gravity, dilations are a
symmetry. Since we are interested in studying the three body problem as a
model of chaos and not for astronomical applications any more, we can study
this simpler example instead. Poincare' initiated this study in 1897, as part of
his pioneering study of chaos. Montgomery has obtained interesting new results
in this direction more than a hundred years later.

H(r,p) =
∑
a

p2
a

2ma
+ U, U(r) = −

∑
a<b

kab
∣ra − rb∣2

has the symmetry

H(�r, �−1p) = �−2H(r,p).

This leads to the �almost conservation� law for the generator of this canonical
transformation

D =
∑
a

ra ⋅ pa

dD

dt
= 2H

Since

D =
d

dt
I, I =

1

2

∑
a

mar
2
a

we get

d2

dt2
I = 2H.

Consider the special case that the total angular momentum (which is con-
served) is zero

L =
∑
a

ra × pa = 0.

This has drastic consequences for the stability of the system. If H > 0
the moment of interia is a convex function of time: the system will eventually
expand to in�nite size. If H < 0 we have the opposite behavior and the system
will shrink to its center of mass in a �nite amount of time. Thus the only stable
situation is when H = 0.
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10.3.1 Montgomery's Pair of Pants

See R. Montgomery arxiv:math/040514v1[Math.DS].
In the case H = L = 0, we can reduce the planar three body orbits with the

1
r2 potential and equal masses to the geodesics of a metric on a four dimensional
space (i.e., two complex dimensions if we think of R1,2 as complex numbers
z1,2).

ds2 =

[
1

∣z1∣2
+

1

∣z2 + 1
2z1∣2

+
1

∣z2 − 1
2z1∣2

]{
∣dz1∣2 +

2

3
∣dz2∣2

}
There is an isometry (symmetry) za → �za, 0 ∕= � ∈ C, which combines

rotations and scaling. We can use this to remove two dimensions to get a metric
on C

ds2 = U(z)∣dz∣2

where the e�ective potential U(z) is a positive function of

z =
z2 + 1

2z1

z2 − 1
2z1

singular at the points z = 0, 1,∞, corresponding to pairwise collisions. These
singular points are at an in�nite distance away.(In mechanics, this distance has
the meaning of action) Near each singularity the metric looks asymptotically
like a cylinder: rather like a pair of pants for a tall thin person.Thus, we get
a metric that is complete on the Riemann sphere with three points removed.
Topologically, this is the same as the plane with two points removed: C−{0, 1}.

Exercise 55. Find the function U(z) explicitly.Compute the curvature (Ricci
scalar) in terms of derivatives of U .

From Riemannian geometry (Morse theory) we know that there is a mini-
mizing geodesic in each homotopy class: there is an orbit that minimizes the
action with a prescribed sequence of turns around each singularity. Let A be
the homotopy class of curves that wind around 0 once in the counter clockwise
direction and B one that winds around 1 . Then A−1 and B−1 wind around 0, 1
in the clockwise direction. Any homotopy class of closed curves corresponds to
a �nite word made of these two letters

Am1Bn1Am2Bn2 ⋅ ⋅ ⋅

or

Bn1Am1Am2Bn2 ⋅ ⋅ ⋅

with non-zero ma, na. These form a group F2, the free group on two gener-
ators: A and B do not commute. Indeed they satisfy no relations among each
other at all. There are an exponentially large number of distinct words of a
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given length: F2 is a hyperbolic group. Given each such word we have a
minimizing orbit that winds around 0 a certain number m1 times then around
1 a certain number n1times then again around 0 some number m1times and so
on.

Moreover, the curvature of the metric is negative everywhere except at two
points (Lagrange points) where it is zero. Thus the geodesics diverge from each
other every where . A small change in the initial conditions can make the orbit
careen o� in some unpredictable direction, with a completely di�erent sequence
of A's and B's. This is chaos. The more realistic 1

r potential is harder to
analyze, but is believed to have similar qualitative behavior.

Research Problem: Find the action of the minimizing geodesic for each
element of F2. Use this to evaluate Gutzwiller's trace formula for �(s), the sum
over closed orbits. Compare with the Selberg-zeta function of Riemann surfaces.



Chapter 11

The Restricted Three Body

Problem

A particular case of the three body problem is of special historical importance
in astronomy: when one of the bodies is of in�nitesimal mass m3 and the other
two bodies (the primaries of masses m1,m2) are in circular orbit around their
center of mass; moreover, the orbit of the small body lies in the same plane
as this circle. This is a good approximation for a satellite moving under the
in�uence of the Earth and the Moon; an asteroid with the Sun and Jupiter;
a particle in a ring of Saturn in�uenced also by one of its moons. The basic
results are due to Lagrange, but there are re�nements (e.g., �halo orbits�) being
discovered even in our time.

11.1 The Motion of the Primaries

Since the secondary has in�nitesimal mass, its e�ect on the primaries can be
ignored. Choose a reference frame where the center of mass of the primaries is at
rest at the origin. The relative co-ordinate will describe an ellipse. We assume
that the eccentricity of this orbit is zero, a circle centered at the origin. If R is
the radius (the distance between the primaries) , and Ω the angular velocity,

m1m2

m1 +m2
RΩ2 =

Gm1m2

R2
, =⇒ Ω2 =

G(m1 +m2)

R3
.

This is just Kepler's third law. The distance of the �rst primary from the
c.m. is �R with � = m2

m1+m2
. We can assume that m1 > m2 so that � <

1
2 .The other primary will be at a distance (1 − �)R in the opposite direction.
Thus the positions of the primaries are, in polar co-ordinates, (�R, �−Ωt) and
(−[1− �]R,Ωt).

81
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The secondary will move in the gravitational �eld created by the two pri-
maries. This �eld is time dependent, with a period equal to 2�

Ω . The Lagrangian
is,(after dividing out a common factor m3)

L =
1

2
ṙ2 +

1

2
r2�̇2 +G(m1 +m2)

[
1− �
�1(t)

+
�

�2(t)

]
.

where �1,2(t) is the distances to the primaries:

�1(t) =
√ [

r2 + �2R2 + 2�rR cos[�− Ωt]
]
, �2(t) =

√ [
r2 + (1− �)2R2 − 2(1− �)rR cos[�− Ωt]

]
Since the Lagrangian is time dependent, energy is not conserved: the sec-

ondary can extract energy from the rotation of the primaries. But we can make
a transformation to a rotating co-ordinate

� = �− Ωt

to emilinate this time dependence.

L =
1

2
ṙ2 +

1

2
r2[�̇+ Ω]2 +G[M +m]

[
1− �
r1

+
�

r2

]
where

r1 =
√ [

r2 + �2R2 + 2�rR cos�
]
, r2 =

√ [
r2 + (1− �)2R2 − 2(1− �)rR cos�

]
We pay a small price for this: there are terms in the Lagrangian that depend

on �̇ linearly. These lead to velocity dependent forces (the Coriolis force) in
addition to the more familiar centrifugal force. Neverthless, we gain a conseved
quantity, the hamiltonian.

H = ṙ
∂L

∂ṙ
+ �̇

∂L

∂�̇
− L

H =
1

2
ṙ2 +

1

2
r2�̇2 −G[m1 +m2]

[
r2

2R3
+

1− �
r1

+
�

r2

]
This \is the sum of kinetic energy and a potential energy; it is often called

the Jacobi integral. (�Integral� in an old term for a conserved quantity.) The
Coriolis force does no work, being normal to the velocity always; so it does not
contribute to the energy. It is important this is the energy measured in a non-
intertial reference frame, which is why it includes the term ∝ r2, the centrifugal
potential.

It is also useful to write the Lagrangian in rotating Caretsian co-ordinates

H =
1

2
ẋ2 +

1

2
ẏ2 + V (x, y), L =

1

2
ẋ2 +

1

2
ẏ2 + Ω [xẏ − yẋ]− V (x, y).
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V (x, y) = −G[m1 +m2]

[
x2 + y2

2R3
+

1− �
r1

+
�

r2

]
r1 =

√
(x− �R)2 + y2, r2

√
(x+ [1− �]R)2 + y2.

11.1.1 A useful identity

It is useful to express the potential energy in terms of r1 and r2, eliminating r.
From the de�nition of r1,2 we can verify that

1

�
r2
1 +

1

1− �
r2
2 =

1

�(1− �)
r2 +R2.

Thus

V (r1, r2) = −G
[
m1

{
r2
1

2R3
+

1

r1

}
+m2

{
r2
2

2R3
+

1

r2

}]
up to an irrelevant constant.

11.1.2 Equilibrium points

There are points where the forces are balanced such that the secondary can be at
rest. ( In the inertial frame, it will then rotate at the same rate as the primaries.)
In studying the potential, we can use the distances r1 and r2 themselves as co-
ordinates in the plane: the potential is separable with this choice. But beware
that this system breaks down along the line connecting the primaries, as along
there r1 and r2 are not independent variables. Also, these variables cover only
one half of the plane, the other half being obtained by re�ection about the line
connecting the primaries.

A short exercise in calculus will show that there is a maximum of the
potential when

r1 = r2 = R

That is, when the thee bodies are located along the verices of an equilateral
triangle. There are actually two such points, on either side of the primary line.
They are called Lagrange points L4 and L5. There are three more equilibrium
points L1, L2, L3 that lie along the primary line y = 0. They are not visible in
terms of r1 and r2 because that system breaks down there. But in the Cartesian
co-ordinates, it is clear by the symmetry y → −y that

∂V

∂y
= 0, if y = 0.

Then
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V (x, 0) = −G[m1 +m2]

[
x2

2R3
+

1− �
∣x− �R∣

+
�

∣x+ [1− �]R∣

]
This function has three extrema, L1, L2, L3. As functions of xthese are

maxima, but are minima along y: they are saddle points of V . There are no
other equilibrium points.

11.1.3 Hill's Regions

It is already clear that for a given H, only the regin with H−V > 0 is accesible
to the secondary particle. For small H the curve H = V is disconnected,
with regions near m1and m2 and near in�nity: these are the places where the
potential goes to −∞. As Hgrows to the value of the potential at L1 (the saddle
point in between the two primaries) the two regions around the primaries touch;
as H grows higher, they merge into a single region. It is only as Hgrows larger
than the potential at L4,5 that all of space is avaliable for the secondary.

For example if a particle is to from a point near m1 to one near m2, the
least amount of energy it needs to have is the potential at the Lagrange point in
between them. The saddle point is like a mountain pass that has to be climbed
to go from deep valley to another. This has interesting implications for space
travel; many of which have been explored in �ction. For example, in the imagi-
nation of many authors, Lagrange points would have strategic importance (like
straits that separate continents) to be guarded. There is also more scienti�cally
interesting study by Belbruno, Marsden and others on transfer orbits of low fuel
cost.

11.1.4 The second derivative of the potential

Th equilibrium points L4, L5, being at the maximum of a potential, would
ordinarily be unstable. But an amazing fact discovered by Lagrange is that the
velocity dependence of the Coriolis force can (if � is not too close to a half)
make them stable equilibria. Such a reversal of fortune does not happen for
L1, L2, L3: small departures from these points will grow. But it has been found
recently (numerically) that there are orbits near these points, called Halo orbits
which do not cost much in terms of rocket fuel to maintain.

To understand the stability of L4and L5 we must expand the Lagrangian to
second order around them and get an equation for small perturbations. The
locations of L4,5 are

x =
R

2
, y = ±R

√
3

4
− �(� − 1).

The second derivative of V at L4,5 is

V ′′ ≡ K = −Ω2

[
3
4 ±

√
27
4 [1− 2�]

±
√

27
4 [1− 2�] 9

4

]
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Note that K < 0: both its eigenvalues are negative. On the other hand for
L1,2,3 we will have a diagonal matrix for K with one positive eigenvalue (along
y) and one negative eigenvalue (along x).

11.1.5 Stability Theory

The Lagrangian takes the form, calling the departure from equilibrium (q1, q2)

L ≈ 1

2
q̇iq̇i +

1

2
Bijqiq̇j −

1

2
Kijqiqj

where

B = 2Ω

[
0 1
−1 0

]
comes from the Coriolis force. For small q, the equations of motion become

q̈ +Bq̇ +Kq = 0.

We seek solutions of the form

q(t) = ei!tA

for some constant vector and frequency !. Real values of ! would describe
stable perturbations. The eigenvalue equation is somewhat unusual

[−!2 +Bi! +K]A = 0

in that it involves both ! and !2.Thus the characteristic equation is

det[−!2 +Bi! +K] = 0.

Or

det

[
K11 − !2 K12 + 2iΩ!
K12 − 2iΩ! K22 − !2

]
= 0

which becomes

!4 − [4Ω2 + trK]!2 + detK = 0

There are two roots for !2.

(!2 − �1)(!2 − �2) = 0

The condition for stabilityis that both roots must be real and positive. This
is equivalent to requiring that the discriminant s positive and also that �1�2 >
0, �1 + �2 > 0. Thus

[trK + 4Ω2]2 − 4 detK > 0, trK + 4Ω2 > 0, detK > 0
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So,

detK > 0, 4Ω2 + trK > 2
√

detK

The �rst condition cannot be satis�ed by a saddle point of V : the eigenvalues
of K has opposite signs. So L1,2,3 are unstable equilibria.

But surprisingly, it can be satis�ed by a maximum as well as the expected
minimum of a potential. For L4.5

trK = −3Ω2, detK =
27

4
�(1− �)Ω4

so that the condition becomes

27�(1− �) < 1.

In other words,

� <
1

2

[
1−

√
1− 4

27

]
≈ 0.03852

(Recall that we chose � < 1
2 ; by calling m1 the mass of the larger primary).

Thus we get stability if the masses of the two primaries are su�ciently di�erent
from each other. In this case the frequencies are given by

!2 =
1±

√
1− 27�(1− �)

2

When � << 1, one of these frequencies will be very small: meaning that the
orbit is nearly synchronous with the primaries.

For the Sun-Jupiter system, � = 9.5388 × 10−4 so the Lagrange points are
stable. The periods of libration (the small oscillations around the equilibrium)
follow from the orbital period of Jupiter (11.86 years) : 147.54 years or 11.9
years.

For the Earth-Moon system � = 1
81 is still small enough for stability. The

orbital period being 27.32 days, we have libration periods of 90.8days and 28.6
days.

Lagrange discovered something even more astonishing: the equilateral trian-
gle is a stable exact solution for the full three body problem, not assuming
one of the bodies to be in�nitesimally small. He thought that these special so-
lutions were arti�cial and that they would never be realized in nature. But we
now know that there are asteroids (Trojan asteroids) that form an equilateral
triangle with Sun and Jupiter. This summer (2011 June) even the Earth is
found to have such a co-traveller at its Lagrange point with the Sun.



Chapter 12

Magnetic Fields

The force on a charged particle in a magnetic �eld is normal to its velocity. So
it does no work on the particle. The total energy of the particle is not a�ected
by the magnetic �eld: the hamiltonian as a function of position and velocities
does not involve the magnetic �eld. Can Hamiltonian mechanics still be used to
describe such systems? If so, where does the information in the magnetic �eld
go in? It turns out that the magnetic �eld modi�es the Poisson Brackets and
not the hamiltonian.

12.1 The Equations of Motion

dr

dt
= v,

d

d
[mv] = ev ×B

Or in terms of components

m
dxi

dt
= vi,

d

dt
[mvi] = e�ijkv

jBk

Here is completely anti-symmetric and

�123 = 1

Let us assume that the magnetic �eld does not depend on time, only on the
psoition.

12.2 Hamiltonian Formalism

The energy (Hamiltonian) is just

H =
1

2
mvivi

We want however,

87
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{
H,xi

}
= vi, {H, vi} =

e

m
�ijkv

jBk

The �rst is satis�ed if {
pi, xj

}
=

1

m
�ij

which is the usual relation following from canonical relations between posi-
tion and momentum. So we want{

1

2
mvjvj , vi

}
=

e

m
�ijkv

jBk

Using the Leibnitz rule this becomes

vj
{
vj , vi

}
=

e

m2
�ijkv

jBk

It is therefore su�cient that

{vj , vi} =
e

m2
�ijkB

k

This is not what follows from canonical relations: the di�erent components
of momentum would commute then. To make this distinction clear, let us denote
momentum by

�i = mvi

Then :

{xi, xj} = 0,
{
�i, xj

}
= �ij , {�i, �i} = −eFij

where
Fij = �ijkBk

The brackets are anti-symmetric. The Jacobi identity is automatic for all
choices except one:

{{�i, �j} , �k} = −e {Fij ,mvk}

= e∂kFij

Taking the cyclic sum, we get

∂iFjk + ∂jFki + ∂kFij = 0

If you work out in components you willsee that this is the condition

∇ ⋅ B = 0
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which is one of Maxwell's equations.Thus the Jacobi identity is satis�ed as
long this Maxwell's equation is satis�ed.

If we have an electrostatic as well as a magnetic �eld the Hamiltonian will
be

H =
�i�i
2m

+ eV

again with the commutation relations above.

12.3 Canonical Momentum

It i possible to bring the commutation relations back to the standard form

{xi, xj} = 0,
{
pi, xj

}
= �ij , {pi, pi} = 0

in those cases where the magnetic �eld is a curl. Recall that locally, every
�eld satisfying

∇ ⋅B = 0

is of the form

B = ∇×A

for some vector �eld A. This is not unique: a change (gauge transforma-
tion)

A→ A +∇Λ

leaves B unchanged. Now if we de�ne

�i = pi − eAi
then the canonical relations imply the relations for �i.

12.4 The Lagrangian

This suggests that we can �nd a Lagrangian in terms of Ai. We need

pi =
∂L

∂ẋi

or

∂L

∂ẋi
= mẋi + eAi

Thus we propose

L =
1

2
mẋiẋi + eAiẋ

i − eV
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as the Lagrangian for a particle in an electromagnetic �eld.

Exercise 56. Show that the Lorentz force equations follows from this La-
grangian.

An important principle of electromagnetism is that the equations of motion
should be invariant under gauge transformations Ai → Ai + ∂iΛ. Under this
change the action changes to

S =

ˆ t2

t1

Ldt→ S +

ˆ t2

t1

eẋi∂iΛdt

The extra terms is a total derivative, hence only depends on end-points:

ˆ t2

t1

e
dΛ

dt
dt = e [Λ(x(t2))− Λ(x(t1))] .

Since we hold the endpoints �xed during a variation, this will not a�ect the
equations of motion.

12.5 The Magnetic Monopole

Recall that the electric �eld of a point particle satis�es

∇ ⋅E = 0

everywhere but its location. Can there be point particles that can serve
as sources of magnetic �elds the same way? None have been discovered to
date:only magnetic dipoles have been found, a combination of North and South
poles. Dirac discovered that the existence of even one such magnetic monopole
the somewhere in the universe would explain a remarkable fact about nature:
that electric charges appear as multiples of a fundamental unit of charge. To
understand this let us study the dynamics of an electrically charged particle in
the �eld of a magnetic monopole, an analysis due to M. N. Saha.

dr

dt
= v,

d

d
[mv] = egv × r

r3

where r is the strength of the magnetic monopole.The problem has spherical
symmetry, so we should expect angular momentum to be conserved. But we
can check that

d

dt
[r×mv] = egr×

[
v × r

r3

]
is not zero. What is going on? Now, recall that identity

d

dt

[r
r

]
=

v

r
− r

r2
ṙ

But
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ṙ =
1

2r

d

dt
[r ⋅ r]

=
1

r
r ⋅ v

So

d

dt

[r
r

]
=
r2v − r(v ⋅ r)

r3

or

d

dt

[r
r

]
=

1

r3
r× [v × r]

Thus we get a new conservation law

d

dt

[
r×mv − eg r

r

]
= 0.

The conserved angular momentum is the sum of the orbital angular momen-
tum and a vector pointed along the line connecting the charge and the monopole.
This can be understood as the angular momentum contained in the elecromag-
netic �eld. When an electric and a magnetic �eld exist together, they carry not
only energy but also momentum and angular momentum. If you integrate the
angular momentum denisty over all of space in the situation abov you will get
exactly this extra term.

J = r×mv − eg r

r

is a �xed vector in space. The orbit does not lie in the plane normal to to
J. Instead it lies on a cone, whose axis is along J. The angle � of this cone is
given by

J cos� = J ⋅ r
r

= −eg.

Exercise 57. Verify that J satis�es the commutation relations of angular mo-
mentum

{Ji, Jj} = �ijkJk

Does orbital angular momentum r×mv satisfy these relations?

Exercise 58. Determine the orbit by exploiting the conservation of energy and
angular momentum.
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12.6 Quantization of electric charge

If we quantize this system, we know that an eigenvalue of J3 is an integer or
half-integer multiple of ℏ and that the eigenvalues of J2 are j(j + 1) where j
is also such a multiple. On the other hand L = r × mv also is quantized in
the same way. It follows that the vector eg r

r must have magnitude which is a
multiple of ℏ

eg = nℏ, n =
1

2
, 1,

3

2
, 2 ⋅ ⋅ ⋅

Thus, if there is even one magnetic monopole somewhere in the universe,
electric charge has to be a quantized in multiples of ℏ. We do see that electric
charge is quantized this way, the basic unit being the magnitude of the charge
of the electron. We do not yet know if the reason for this is the existence of a
magnetic monopole.

12.7 The Penning Trap

A static electromagnetic �eld can be used to trap charged particles. You can
bottle up antimatter this way; or use hold an electron or ion in place to make
precise measurements on it.

It is not possible for a static electric �eld by itself to provide a stable equi-
librium point: the potential must satisfy the Laplace equation ∇2V = 0. So at
any point the sum of the eigenvalues of the Hessian matrix V ′′(second derva-
tives) must vanish. At a stable minimum they would all have to be positive. It
is possible to have one negative and two positive eigenvalues. This is true for
example for a quadrupole �eld

V (x) =
k

2
[2x2

3 − x2
1 − x2

2]

Such a �eld can be created by using electrically charged conducting plates
shaped like a hyperboloid:

x2
1 + x2

2 − 2x2
3 = constant

So the motion in the x1 − x2 plane is unstable but that along the x3 axis is
stable. Now we can put a constant magnetic �eld pointed along the x3axis. If
it is strong enough, we get a stable equilibrium point at the origin.

Look at the equation of motion of a particle in a constant magnetic �eld
and an electrostatic potential that is a quadratic function of position V (x) =
1
2x

TKx.

q̈ + F q̇ +
e

m
Kq = 0
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Here F is an antisymmetric matrix proportional to the magnetic �eld. For
a �eld of magnitude B alng the x3 axis

F =
e

m

⎛⎝ 0 B 0
−B 0 0
0 0 0

⎞⎠
If we assume the ansatz

q = Aei!t

the equation becomes [
−!2 + i!F +

e

m
K
]
A = 0

which gives the characterstic equation

det
[
−!2 + i!F +

e

m
K
]

= 0

If themagnetic �eld is along the third axis and if the other matrix has the
form

K =

⎛⎝ k1 0 0
0 k2 0
0 0 k3

⎞⎠
this equation factorizes

(−!2 + k3) det

[
e
mk1 − !2 i! eBm
−i! eBm

e
mk2 − !2

]
= 0

The condition for stability is that all roots for !2 are positive. Obe of the
roots is k3 so it must be positive. It is now enough that the discrimant as well
as the sum and product of the other two roots are positive. This amounts to

k3 > 0, k1k2 > 0,
eB2

m
> 2
√
k1k2 − (k1 + k2).

The physical meaning is that the electrostatic potential stabilizes the motion
in the x3direction. Although the electric �eld pushes the particle away from the
origin, the magnetic force pushes it back in.

A collection of particles moving in such a trap will have frequencies depen-
dent on the ratios e

m . These can be measured by Fourier transforming the
electric current they induce on a probe. Thus we can measure the ratios e

m , a
technique called Fourier transform mass spectrometry.

Exercise 59. Find the libration frequencies.



Chapter 13

Discrete Time

Is the �ow of time continuousor is it discrete, like the sand in an hourglass? As
far as we know it is continuous. Yet, it is convenient in many situations to think
of it as discrete. For example, in solving a di�erential equation numerically, it is
convenient to calculate the �nite change over a small time interval and iterate
this process. It is important that we retain the symmetries and conservation laws
of the di�erential equation in making this discrete approximation. In particular,
each time step must be a canonical (also called symplectic) transformation.
Such symplectic integrators are commonly used to solve problems in celestial
mechanics.

Another reason to study discrete time evolution is more conceptual. It goes
back to Poincare's pioneering study of chaos. Suppose we have a system with
several degrees of freedom. We can try to get a partial understanding by pro-
jecting to one degree of freedom (say (p1, q1). That is, we look only at initial
conditions where the degrees of freedom are �xed at some values ( say (pi, qi) = 0
for i > 1). Then we let the system evolve in the full phase space and ask when
it will return to this subspace (i.e., what is the next value of (p1, q1) for which
(pi, qi) = 0 ?). This gives a canonical transformation (called the Poincare'
map ) of the plane (p1, q1) to istelf. We can then iterate this map to get an
orbit, an in�nite sequence of points in the plane. In simple cases (like the har-
monic oscillator) this orbit will be periodic. If the system is chaotic, the orbit
will wander all over the plane, and it is interesting to ask for the density of its
distribution: how many points in the orbit are there in some given area? This
distribution often has an interesting fractal structure: there are islands that
contain points in the orbit surrounded by regions that do not contain any. But
if we were to magnify these islands, we will see that they contain other islands
surrounded by empty regions and so on to the smallest scales.

94
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13.1 First Order Symplectic Integrators

Symplectic transformation is just another name for a canonical transforma-
tion; i.e., a transformation that preserves the Poisson brackets. In many cases
of physical interest the hamiltonian of a mechanical system is of the form

H = A+B

where the dynamics of A and B are separately are easy to solve. For example,
if the hamiltonian is

H = T (p) + V (q)

with a kinetic energy T that depends on momentum variables alone and
a potential energy V that depends on position alone, it is easy to solve the
equations for each separately:

∂pi
∂t1

= {T, pi} = 0,
∂qi

∂t1
= {T, qi} =

∂T

∂pi
, =⇒ (pi(t1), qi(t1)) =

(
pi(0), qi(0) +

∂T

∂pi
t1

)

∂pi
∂t2

= {V, pi} = −∂V
∂qi

,
dqi

dt2
= {V, qi} = 0, =⇒ (pi(t2), qi(t2)) =

(
pi(0)− ∂V

∂qi
t2, q

i(0)

)
The problem is of course that these two canonical transformations do not

commute. So we cannot solve the dynamics of H by combining them.
But the commutator of these transformations is of order t1t2. Thus for small

time intervals it is small, and it might be a good approximation to ignore the
lack of commutativity. This gives a �rst order approximation. If we split the
time into small enough intervals, the iteration of this naive approximation might
be good enough. We then iterate this time evolution to get an approximation
to the orbit. Later we will see how to improve on this by including the e�ects
of the commutator to the next order.

If we perform the above two canonical transformations consecutively1, choos-
ing equal time steps �, we get the discrete time evolution

p′i = pi − �Vi(q), qi′ = qi + �T i(p′)

where Vi = ∂V
∂qi , T

i = ∂T
∂pi

. In many cases this simple ��rst order symplectic
integrator� already gives a good numerical integration scheme.even here, it is
important to keep the

Example 60. The consider the example of the simple pendulum T = p2

2 , V =
!2 [1− cos q] . If we perform the above two canonical transformations consecu-
tively, choosing equal time steps �, we get the discrete time evolution

1We transform p �rst then q because usually it leads to simpler formulas. See example.
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Figure 13.1:
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p′ = p− �!2 sin q, q′ = q + �p′

Equivalently,

p′ = p− �!2 sin q, q′ = q + �p− �2!2 sin q

This is a canonical transformation:

det

[
∂p′

∂p
∂p′

∂q
∂q′

∂p
∂q′

∂q

]
= det

[
1 −�!2 cos q
� 1− �2!2 cos q

]
= 1.

Iterating this map we get a discrete approximation to the time evolution of
the pendulum. It gives a nice periodic orbit as we expect for the pendulum.

Notice that if we had made another discrete approximation (which attempts
to do the T and V transformations together) we would not have obtained a
canonical transformation:

p′ = p− �!2 sin q, q′ = q + �p

det

[
∂p′

∂p
∂p′

∂q
∂q′

∂p
∂q′

∂q

]
= det

[
1 −�!2 cos q
� 1

]
∕= 1

The orbit of this map goes wild, not respecting conservation of energy or of
area:

This is why we need to use sympletic integrators.
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Figure 13.2:
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13.2 Second Order Symplectic Integrator

Suppose we are solving a linear system of di�erential equations

dx

dt
= Ax

for some constant matrix A. The solution is

x(t) = etAx0

where the exponential of a matrix is de�ned by the series

etA = 1 + tA+
1

2!
t2A2 +

1

3!
t3A3 ⋅ ⋅ ⋅

Solving nonlinear di�erential equations

dxi

dt
= Ai(x), xi(0) = xi0

is the same idea, except that the matrix is replaced by a vector �eld whose
components can depend on x. The solution can be thought of still as an expo-
nential of the vector �eld, de�ned by a similar power series. For example, the
change of a function under time evolution has the Taylor series expansion

f(x(t) = f(x0) + tAf(x0) +
1

2!
t2A2f(x0) +

1

3!
t3A3f(x0)

Here

Af = Ai
∂f

∂xi
, A2f = Ai

∂

∂xi

(
Aj

∂f

∂xj

)
, ⋅ ⋅ ⋅

Now, just as for matrices,
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eA+B ∕= eAeB

in general, because A and Bmay not commute. Up to second order in t we
can ignore this e�ect

et(A+B) = etAetB + O(t2)

The �rst order symplectic integrator we described earlier is based on this.
There is a way to correct for the comutator, called the Baker-Campbell-

Hausdor� formula (or Poincare'-Birkho�-Witt lemma). To second order, it gives

etAetB = exp

{
tA+ tB +

t2

2
[A,B] + O(t3)

}
It is possible to determine higher order corrections as well, but we will con-

tent ourselves with the �rst one. It follows that

et(A+B) = e
1
2 tAetBe

1
2 tA + O(t3)

In our case, A and B will be generators of canonical transformations whose
Hamilton's equations are easy to solve (i.e., etA and etB are known.) We can
then �nd an approximation for the solution of hamilton's equations for A+B.
As an example, if

H(q, p) = T (p) + V (q)

we can deduce a second order symplectic integrator (choosing A = T,B =
V ). De�ne an intermediate variable

zi = pi −
1

2
�Vi(q)

Then a step of the iteration is

qi′ = qi + �T i(z)

p′i = zi −
1

2
�Vi(q

i′)

See H. Yoshida Phys. Lett. A150, 262(1990) for higher orders.

13.3 Chaos With One Degree of Freedom

A hamiltonian system with a time independent hamiltonian always has at leat
one conserved quantity: the hamiltonian itself. Thus we wxpect all such systen
with one degree of freedom to be integrable. But if the hamiltonin is time
dependent this is not the case any more. For example, if the hamiltonian is
periodic funcion of time, in each period the system will evolve by a canonical
transformation. Iterating this we will get an orbit of a symplectic map which
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can often be chaotic. G. D. Birkho�, Acta. Math. 43, 1 (1920) is an early
study of this situation.

Example 61. The Chirikov Standard Map

pn+1 = pn +K sin qn, qn+1 = qn + pn+1

This can be thought of either as a discrete approximation to the pendulum
(see above) or as the time evolution over one period of a kicked rotor with the
periodic time dependent hamiltonian

H =
p2

2
+K cos q

∑
n∈Z

�(t− n)

Although the evolution of the pendulum itself is integrable, this discrete
evolution can be chaotic. Here are plots of the orbits of the same initial point
(p, q) = (0.1, 1) for various values ofK. Thus we see that iterations of a canonical
transformations can have quite unpredictable behavior even with just one degree
of freedom.
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Chapter 14

Dynamics in One Real

Variable

It became clear towards the end of the nineteenth century that most systems
are not integrable: we will never get a solution in terms of simple functions
(trigonometric, elliptic, Painleve' etc.) The focus now shifts to studying statis-
tical properties, such as averages over long time. And to universal properties,
whch are independent of the details of the dynamics. It is useful to study the
simplest case of dynamics, the iterations of a function of a single real variable,
which maps the interval [0, 1] to itself. . Even a simple function like �x(1− x)
(for a constant � ) leads to chaotic behavior. Only after the advent of digi-
tal computers has it become possible to understand this in some detail. But
it is not the people who had the biggest of fastest computers that made the
important advances: using a hand-held calculator to do numerical experiments,
pointed Feigenbaum to patterns which led to a beautiful general theory. The
best computer is still the one between your ears.

See S. H. Strogarz Nonlinear Dynamics and Chaos Westview Press (1994)

14.1 Maps

A map is just another word for a function f : X → X that takes some set to
itself. Since the domain and range are the same, we can iterate this: given an
initial point x0 ∈ X we can de�ne an in�nite sequence

x0, x1 = f(x0), x2 = f(x1), ⋅ ⋅ ⋅

i.e.,

xn+1 = f(xn)

This is an orbit of f . A �xed point of f is a point that is mapped to
itself:

102
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f(x) = x.

The orbit of a �xed point is really boring x, x, x, ⋅ ⋅ ⋅ .
A periodic orbit satis�es

xn+k = xn

for some k. The smallest number for which this is true is called its period.
For example, if the orbit of some point is periodic with period two, it will look
like

x0, x1, x0, x1, x0, x1 ⋅ ⋅ ⋅ , x0 ∕= x1

Given a function we can de�ne its iterates

f2(x) = f(f(x)), f3(x) = f(f(f(x))), ⋅ ⋅ ⋅

A moment's thought will show that a �xed point of one of the iterates fk(x)
is the same thing as a periodic orbit of f(x). For example, if x0 is not a �xed
point of f(x) but is one for f2, then its orbit is periodic with period two:

f(x0) = x1 ∕= x0, x0 = f(f((x0))

gives the orbit

x0, x1, x0, x1 ⋅ ⋅ ⋅

So far we have not assumed anything abot the space X of the function f . It
will often be useful to put some additional conditions such as

∙ X is a topological space (which allows us to talk of continuous functions)
and f : X → X is a continuous function

∙ X is a di�erentiable manifold and f : X → X is a di�erentiable function

∙ Xis a complex manifold and f : X → X is a complex analytic (also called
holomorphic) function

∙ X carries a Poisson structure f : X → X is a canonical (also called
symplectic ) transformation

In addition if f is injective (that is, there is only one solution x to the
equation f(x) = y for a given y) we can de�ne its inverse. This allows us to
extend the de�nition of an orbit backwards in time:

f(x−1) = x0, x−1 = f−1(x0)

etc.
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14.2 Doubling Modulo One

Consider the map of tne unit interval [0, 1] to itself

f(x) = 2x mod 1

That is, we double the number and keep its fractional part. Clearly, it has
a �xed point at x = 0.

A simple way to understand this map is to expand every number in base
two. We will get a sequence

x = 0.a1a2a3 ⋅ ⋅ ⋅

where ak are either 0 or 1. Doubling xis the same as shifting this sequence
by one step:

x = a1.a2a3 ⋅ ⋅ ⋅

Taking modulo one amounts to ignoring the piece to the left of the binary
point:

f(0.a1a2a3 ⋅ ⋅ ⋅ ) = 0.a2a3a3 ⋅ ⋅ ⋅

This map is not injective: two values of x are mapped to the same value
f(x) since the information in the �rst digit is lost. A �xed point occurs when
all the entries are equal: either 0 or 1 repeated. But both of these represent 0
modulo one. (Recall that 0.11111.. = 1.0 = 0 mod1.) So we have just the one
�xed point.

An orbit of period two is a sequence

0.a1a2a1a2a1a2 ⋅ ⋅ ⋅

We need a1 ∕= a2 so that this is not a �xed point.
Thus we get 0.01010101.. = 1

3 and 0.101010 ⋅ ⋅ ⋅ = 2
3 which are mapped into

each other to get an orbit of period two.Alternatively, they are �xed points of
the iterate

f2(x) = f(f(x)) = 22x mod 1.

More generally we see that

fn(x) = 2nx mod 1

which as �xed points at

x =
k

2n − 1
, k = 1, 2, 3 ⋅ ⋅ ⋅ .

There are a countably in�nite number of such points lying on periodic orbits.
Every rational number has a binary expansion that terminates with a repeat-

ing sequence. Thus they lie on orbits that are attracted to some periodic orbit.
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Since the rational numbers are countable, there are a countably in�nite number
of such orbits with a predictable behavior. But the irrational numbers in the
interval [0, 1] which are a much bigger (i.e., uncountably in�nite) set, have no
pattern at all in their binary expansion: they have a chaotic but deterministic
behavior.

14.3 Stability of Fixed Points

If the function is di�erentiable, we can ask whether a �xed point is stable or
not; i.e., whether a small change in initial condition will die out with iterations
or not.

Consider again f : [0, 1]→ [0, 1] . Suppose x∗ is a �xed point

f(x∗) = x∗

Under a small change fom the �xed point

x = x∗ + �

Then

f(x∗ + �) = x∗ + �f ′(x∗) + O(�2)

f2(x∗ + �) = x∗ + �f ′2(x∗) + O(�2)

But

d

dx
f(f(x)) = f ′(f(x))f ′(x)

by the chain rule. At a �xed point

f ′2(x∗) = f ′(x∗)f ′(x∗) = [f ′(x∗)]
2

More generally

f ′n(x∗) = [f ′(x∗)]
n

Thus the distance that a point near x∗ moves after niterations is

∣fn(x∗ + �)− x∗∣ = [f ′(x∗)]
n
�+ O(�2)

This will decrease to zero if

∣f ′(x∗)∣ < 1

This is the condition for a stable �xed point. On the other hand, if

∣f ′(x∗)∣ > 1
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we have an unstable �xed point. The case is

∣f ′(x∗)∣ = 1

is marginal: we have to go to higher orders to determine the behavior near
x∗.

Example 62. Suppose f(x) = x2 is a map of the closed interval (0, 1) . Then
0 is a �xed point. It is stable, as f ′(0) = 0. But the �xed point at x = 1 is
unstable as f ′(1) = 2 > 1. The orbit of 0.99 is driven to zero:

0.99,0.9801,0.960596,0.922745,0.851458,0.72498,0.525596,0.276252,0.076315,
0.00582398,0.0000339187,1.15048*10−9,1.3236*10−18⋅ ⋅ ⋅

Example 63. The map f(x) = 1
4x(1−x) has a stable �xed point at the origin.

Where is its other �xed point? Is it stable?

Example 64. But for the case f(x) = 2x(1− x) the origin is an unstable �xed
point. It has another �xed point at 0.5 which is stable. If we start near x = 0
we will be driven away from it towards x = 0.5. For example, the orbit of
x0 = 10−6 is

0.00100, 0.001998, 0.00398802, 0.00794422, 0.0157622, 0.0310276, 0.0601297,
0.113028, 0.200506, 0.320606, 0.435636, 0.491715, 0.499863, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5 ⋅ ⋅ ⋅

14.4 Unimodal Maps

Di�erentiable maps of the unit interval f : [0, 1]→ [0, 1] that satisfy the bound-
ary conditions f(0) = f(1) = 0 must have a maximum between 0 and 1. If there
is exactly one such maximum they are said to be unimodal. Examples are

f(x) = 3x(1− x), b sin�x, for b < 1

etc. They have an interesting dynamics. It turns out that the special case

f(x) = �x(1− x)

for various values of the parameter represents this class of maps very well:
many of the properties are universal: independent of the particular unimodal
map chosen so that a simple example will su�ce.

An interpretaion is that this map represents the time evolution of the popu-
lation of some family of animal (rabbits, maybe). Let x be the number of rabbits
as a fraction of the maximum number that can be supported by some carrot
patch. If x is too close to the maximum value, the number of rabbits in the next
generation will be small: many will die of starvation. But if x is small, the next
generation will have a number proportional to x, the proportionality constant
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� being a measure of the fertility of rabbits. 1 We will choose 0 < � < 4 so that
the maximum value remains less than one: otherwise the value f(x) might be
outside the interval.

A stable �xed point would represent a self-sustaining population. There are
at most two �xed points:

f(x) = x =⇒ x = 0, 1− 1

�

Note that

f ′(0) = �, f ′
(

1− 1

�

)
= 2− �

14.4.1 One Stable Fixed Point: 1 > � > 0

When � < 1 the second �xed point is outside the interval, so it would not be
allowed. In this case the �xed point at the origin is stable:

f ′(0) = � < 1

Every point on the interval is attracted to the origin. The fertility of our
rabbits is not high enough to sustain a stable population.

14.4.2 One Stable and One Unstable Fixed Point: 1 < � <
3

When 1 < � < 3 the �xed point at the origin is unstable while that at 1 − 1
�

is stable. A small starting population will grow and reach this stable value
after some oscillations. For example when � = 2.9 this stable value is 0.655172.
A population that is close to 1 will get mapped to a small value at the next
generation and will end up at this �xed point again.

14.4.3 Stable Orbit of period two : 3 < � < 1 +
√
6

Interesting things start to happen as we increase � beyond 3. Both �xed points
are now unstable, so it is not possible for the orbits to end in a steady state
near them. A periodic orbit of period two occurs when � is slightly larger than
3. That is, there is a solution to

f(f(x)) = x

within the interval. For example, when � = 3.1 the solutions are

0, 0.558014, 0.677419, 0.764567

1This is crude.But then, it is only an attempt at quantitative biology and not physics. At

least, it is not economics.
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The �rst and the third are the unstable �xed points of f . we found earlier.
The other two values mapped into each other by f and form a periodic orbit of
period two.

f(x1) = x2, f(x2) = x1,

x1 ≈ 0.558014, x2 = 0.764567

Is this stable? That amounts to asking whether ∣f ′2∣ < 1 at these points. If
f(x1) = x2, f(x2) = x1

f ′2(x1) = f ′(f(x1))f ′(x1) = f ′(x2)f ′(x1)

Clearly f ′2(x2)is equal to the same thing. So we are asking of the product of
the derivatives of f along the points on one period is less than one. Numerically,
for � = 3.1 we get f ′2(x1) = 0.59. This means that the orbit of period two is
stable. The population of rabbits ends up alternating between these values
forever, for most starting values.

We can understand this analytically. To �nd the �xed points of f2 we must
solve the quartic equation f2(x) = x. We already know two roots of this equation
(since 0, 1 − 1

� are �xed points of f hence of f2). So we can divide by these

(that is, simplify f2(x)−x
x(x−1+ 1

� )
) and reduce the quartic to a quadratic:

1 + �− x�− x�2 + x2�2 = 0

The roots are at

x1,2 =
1 + �±

√
−3− 2�+ �2

2�

As long as � > 3 these roots are real: we get a periodic orbit of period two.
We can calculate the derivative at this �xed point as above:

f ′2(x1) = 4 + 2�− �2

For the period two orbit to be stable we get the condition (put f ′2(x1) = −1
to get the maximum value for stability)

� < 1 +
√

6 ≈ 3.44949

14.4.4 Stable Orbit of period four : 3.44949... < � < 3.54409..

Thus, as � increases further this orbit will become unstable as well: a period
four orbit develops. Numerically, we can show that it is stable till � ≈ 3.54409..
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14.4.5 3.54409.. < � < �∞

After that there is a stable period eight orbit until � ≈ 3.5644... And so on. Let
�n be the value at which a period 2n orbit �rst appears. They form a convergent
sequence :

3, 3.44949. 3.54409, 3.5644, 3.568759, → �∞ ≈ 3.568856

The rate of convergence is geometric:

lim
n→∞

�n − �n−1

�n+1 − �n
≡ � = 4.669..

A study of another unimodal map such as f(x) = � sin�x (restricted to the
unit interval) will lead to a similar, but numerically di�erent sequence. While
studying this, Feigenbaum made a surprising discovery: although the values at
which the period doubles depend on the choice of f , the rate of convergence
is universal : it is always the same mysterious number 4.669... This reminded
him of similar universality in the theory of critical phenomena (such as when
a gas turns into a liquid) which had been explained by Wilson using an eso-
teric theoretical tool called renormalization. Feigenbaum then developed a
version of renormalization to explain this universality in chaos, leading to the
�rst quantitative theory of chaos. In particular, the universal ratio above turns
out to be the eigenvalue of a linear operator.



Chapter 15

Dynamics in One Complex

Variable

For a deeper study, see the book by J. Milnor of the same title.

15.1 The Riemann Sphere

The simplest analytic functions are polynomials. They are analytic everywhere
on the complex plane. At in�nity a polynomial must have in�nite value, except
in the trivial case where it is a constant. It is convenient to extend the complex
plane by including the point at in�nity, Ĉ = C ∪ {∞}. A rational function is of

the form R(z) = P (z)
Q(z) where P (z) and Q(z) are polynomials (without common

factors, because they could be cancelled out). Rational functions can be thought
of as analytic functions maping Ĉ to itself: whenever the denominator vanishes,
its value is the new point at in�nity we added. For example, the function 1

z
can now be thought of as an analytic function that maps ∞ to zero and zero to
in�nity.

An important geometric idea is that Ĉ can be identi�ed with a sphere. More
precisely, there is a coordinate system on S2 that associates to every point p
on it a complex number; place the sphere on the plane so that its South pole
touches the origin. Dran a straight line from the north pole to p ∈ S2; continue
it until it reaches the plane at some point z(p). This is the co-ordinate of p.
Clearly the co-ordinate of the South pole is zero. The equator is mapped to the
unit circle. As we get close to the North Pole, the co-ordinate gets larger: the
North pole itself is mapped to the point at in�nity.

A moments thought will show that this map is invertible: to every point on
Ĉ there is exactly one point on S2. So the sphere is nothing but the complex
plane with the point at in�nity added. This point of view on the sphere is
named for Riemann, the founder of complex geometry.

Thus Rational functions are complex analytic maps of the sphere to itself.

110
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The study of the dynamics of such maps is an interesting subject. Even simple
functions such as f(z) = z2 + c (for constant c) lead to quite complicated
behavior.

15.2 Mobius Transformations

A rotation takes the sphere to itself in an invertible way: each point has a unique
inverse. It preserves the distances between points. In complex geometry, there
is a larger class of analytic maps that take the sphere to itself invertibly. The
rotations are a subest of these. To determine these we ask for the set of rational
functions for which the equation

R(z) = w

has exactly one solution for each w and moreover R(z) ∕= R(z′) if z ∕= z′ .
This is the same as solving the equation

P (z)− wQ(z) = 0.

The number of solutions is the degree of the polynomial P (z)−wQ(z). This
is the larger of the degrees of P (z)or Q(z): which is called the degree of the
rational function R(z). Thus for example 1

z2+3 has degree two. So we see that
invertible maps of the sphere correspond to rational functions of degree one; i.e.,
P (z) and Q(z) are noth linear functions

M(z) =
az + b

cz + d

But, the numerator and denominator should not be just multiples of each
other: then M(z) is a constant. To avoid this, we impose

ad− bc ∕= 0

Exercise 65. Check that ad− bc = 0 if and only if R(z) is a constant.

In fact by dividing though by a constant we can even choose

ad− bc = 1

We are interested in iterating maps so let us ask for the composition of two
such maps M3(z) = M1(M2(z)) . It must also be a ratio of linear functions:
invertible functions compose to give invertible functions. Calculate away to
check that

Mi(z) =
aiz + bi
ciz + di

, i = 1, 2, 3

have coe�cients related by matrix multiplication:
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(
a3 b3
c3 d3

)
=

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
Thus Mobius transformations correspond to the group of 2 × 2 matrices of

deteminant one, also called SL(2, C). Rotations correspond to the subgroup
of unitary matrices. It turns out that the general Mobius transformation is
closely related to a Lorentz transformation in space-time. The set of light-rays
(null vectors) passing through the origin in Minkowski space is a sphere. A
Lorentz transformation will map one light ray to another: this is just a Mobius
transformation of the sphere.

If we ask how the ratio of two components of a two coponent vector trans-
form, we get a Mobius transformation(

 1

 2

)
7→
(
a b
c d

)(
 1

 2

)
 1

 2
≡ z 7→ az + b

cz + d
.

15.3 Dynamics of a Mobius Transformation

We can now ask for the e�ect of iterating a Mobius transformationM(z) = az+b
cz+d .

Given an initial point z0, we get an in�nite sequence

zn = M(zn−1)

Using matrices we can convert this iteration into a linear operation: mul-
tiplying matrices. This is easier to study than rational functions, which are
non-linear.

zn = Mn(z0)

where Mn is the nth matrix power :

Mn =

(
a b
c d

)n
The simplest case is a diagonal matrix

a = d−1, b = c = 0.

Then

zn = a2nz0

Thus, any point is eventually mapped to ∞ if ∣a∣ > 1; or to zero if ∣a∣ < 1.
If a = ei� is of magnitude one, we get a rotation around the origin. In this case,
every point (other than 0 or ∞) lies on a periodic orbit of period k if the �

� is
a rational number with denominator k .
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Recall that the eigenvalues of a matrix are the roos to its characteristic
equation

det

(
a− � b
c d− �

)
= 0

Since the determinant is one, the roots are inverses of each other

�2 = �−1
1 .

If the roots are distinct �1 ∕= �2(i.e., if this polynomial is not a perfect
square) there is always a basis in which the matrix is diagonal.(

a b
c d

)
= S

(
�1 0
0 �−1

1

)
S−1

for some invertible matrix S. Then powers of this matrix are just(
a b
c d

)n
= S

(
�n1 0
0 �−n1

)
S−1

Again, every point is driven to in�nity or zero if ∣�∣ ∕= 1. If ∣�∣ = 1 we again
get rotations.

But what is the roots are not distinct? For example(
1 1
0 1

)
In this case the Mobius transformation is a translation

z 7→ z + 1

Its powers are (
1 1
0 1

)n
=

(
1 n
0 1

)
so that

z 7→ z + n

Jordan's theorem says that any matrix with coincident roots can be brought
to the upper triangular form (

1 �
0 1

)
The diagonal entries are equal because the determinant is one; the case where

they are both minus one yields the same Mobius transformation.
To conclude, there are three kinds of Mobius transformations
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∙ elliptic: the roots are distinct and of magnitude one: these are equivalent
to rotations around the axis connecting the Poles z → e2i�z.

∙ parabolic: the roots are equal. These are equivalent to translations z 7→
z + b.

∙ hyperbolic: the roots are distinct and of magnitude di�erent from one:
these are equivalent to scaling z → a2z

Much more interesting dynamics can follow from iterating rational maps of
degree greater than one.

15.4 The map z 7→ z2

Let us look at the simplest map of degree 2

z 7→ z2.

Clearly, any point in the interior of the unit circle will get mapped to the
origin after many iterations. Any point outside the unit circle will go o� to
in�nity. On the unit circle itself, we get the doubling map

z = e2�ix, x 7→ 2x mod 1

We saw that the latter is chaotic: irrational values of x have a completely
unpredictable orbit. But these are most of the points on the unit circle. Even
the periodic orbits (rational numbers with a denominator that is a power of two)
have something wild about them: they are all unstable. The unit circle is the
union of such unstable periodic points. This is a signature of chaotic behavior.

Thus the complex plane can be divided into two types of points:. Those not
on the unit circle, which get mapped predictably; and those on the unit circle
whose dynamics is chaotic. We will see that points on the plane can always be
classi�ed into two such complementary subsets. The chaotic points belong to
the Julia set and the rest belong to the Fatou set. But in general, the Julia
set is not necessarily something simple like the unit circle.

15.5 The map z 7→ z2 + i

Often, it is a quite intricate fractal. For example, the Julia set of the map
z 7→ z2 + i is a �dendrite�: a set with many branches each of which are branched
again. Why does this happen? The key is that at its �xed point (which is
unstable), the derivative is not a real number. So in the neighborhood of the
�xed point there are orbits that looks like a spiral. Such a set cannot lie in a
smooth submanifold of the plane, other than the entire plane. So, whenever we
have an unstable �xed point with a derivative that is not real (and we know
that the domain of repulsion is not the whole plane) the Julia set will be some
kind of fractal. This is very common.
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How do we come up with a de�nition of when an orbit is chaotic and when
it is not? i.e., which points belong to the Julia set and which to the Fatou set?
Such a precise de�nition is needed to make further progress.

We will need a notion of convergence of maps to make sense of this idea.
Also, a notion of distance on the complex plane that is invariant under the
Mobius transformations.

15.6 Metric on the Sphere

In spherical polar co-ordinates the distance between neighboring points on the
sphere is

ds2 = d�2 + sin2 �d�2

The stereographic co-ordinates are related to this by

z = cot
�

2
ei�

Rewritten in these co-ordinates the metric is

ds2 =
4∣dz∣2

(1 + zz̄)2
.

The distance s between two points z1, z2 can be calculated from this by inte-
gration along a great circle. For our puposes an equally good notion of distance
in the length d of the chord that connects the two points. Some geometry will
give you the relation between the two notions:

d = 2 sin
s

2
=

2∣z1 − z2∣√
(1 + ∣z1∣2)(1 + ∣z2∣2)

The advantage of these notions of distance over the more familiar ∣z1 − z2∣
is that they are invariant under rotations. For example, the point at in�nity is
at a �nite distance.

We only care about the topology de�ned by the distance, which is the same
for L and s: i.e., when one is small the other is also. So any sequence that
converges in one will converge in the other. It is a matter of convenience which
one we use in a computation. They both satisfy the conditions for a metric:

d(z1, z2) = d(z2, z1), d(z1, z2) ≤ d(z1, z3) + d(z3, z2)

The latter is the triangle inequality.
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15.7 Convergence

Given a metric, we can de�ne the notion of a convergent sequence : we say that
zn converges to z if for every � there is an N such that d(znz) < � for n ≥ N .

This is the easy part. The tricky part is that we will also need to know what
it means for a sequence of functions to converge to another function, within some
domain U ⊂ S2. We will say that a sequence of functions fn : U → S2 converges
to a function � : U → S2if, for every � there is an N that is independent of
z ∈ U such that the distances between the images d(fn(z), �(z)) < � for every
n ≥ N . The key condition is that the values fn(z) converge to �(z) uniformly
in z: i.e., that the number N is independent of z.

15.8 Julia and Fatou Sets

In our application, we will look at the case where fn(z) are iterations of some
analytic function fon the Riemann sphere. The limiting function may not be
rational, but it must be analytic in some domain U ⊂ S2. If the sequence of
iterates fn contains a subsequence that converges locally uniformly to some
analytic function � , we can eventually replace the dynamics of f by that of
�. When this happens the dynamics is not chaotic. So we de�ne the Fatou
set of f to be the largest set on which the iterates fn have a subsequence that
converges locally uniformly to an analytic function �. The complement of the
Fatou set is the Julia set. On it, the dynamics is chaotic.

Here are some theorems about the Julia set that helps to explain what it is.
The proofs are in Milnor's book.

Theorem 66. Let J be the Julia set of of some analytic function f : S2 →
S2.Then, z ∈ J , if and only if its image f(z) ∈ J as well.

Thus, the Julia set is invariant under the dynamics: it explains the asymp-
totic behavior of f . That is, the Julia set of f and those of its iterates fn are
the same.

Theorem 67. Every stable periodic orbit is in the Fatou set. However, every

unstable periodic orbit is in the Julia set.

You see here the essential dichotomy between stable and unstable �xed or-
bits. We can say more:

Theorem 68. The basin of attraction of every stable periodic point is in the

Fatou set.

Theorem 69. The Julia set is the closure of the set of unstable periodic orbits.

It is useful to have a characterization of the Julia set that allows us to
compute it.

Theorem 70. If z0 is in the Julia set J of some analytic function f , then the

set of preimages of z0 is everywhere dense in J .
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That is, the Julia set is well-approximated by the set{
z ∈ S2 : fn(z) = z0, n ≥ 1

}
where fn is the nth iterate of f . So to compute a Julia set, we must �rst

�nd one point z0 on it. (For example, pick an unstable �xed point .). Then
we solve the equation f(z) = z0 to �nd the �rst set of preimages. If f(z) is
a rational function this amounts to solving some polynomial equation, which
has some �nite number of solutions. Then we �nd all the preimages of these
points and so on. The number of points grows exponentially. If we plot them,
we get an increasingly accurate picture of the Julia set. The point in doing this
�backwards evolution� is that it is stable. Precisely because f is unstable near
z0, its inverse is stable: we can reliably calculate the solutions to f(z) = z0 since
the errors in z0 will be damped out in the solutions.

In practice, it might make sense to pick just one pre-image at random at
each step. This way, we can search in depth and not be overwhelmed by the
exponential growth of pre-images. Other tricks to make nice pictures of Julia
sets are described in an appendix of Milnor's book.



Chapter 16

Stability and Curvature

We saw that the geodesics on a Riemannian manifold are an example of a
hamiltonian system. Conversely, using the Maupertuis principle, the orbits of
any conservative mechanical system without velocity dependent forces can be
thought of as geodesics. The curvature of a Riemannian manifold describes
the change of geodesics under in�nitesimal perturbations. Negative curvature
implies an instability and positive curvature a stability. This dynamical notion
of stability of orbits is analogous to, but di�erent from, the static stability of
an equilibrium point. A system with bounded orbits and negative curvature is
chaotic. An example is the system of geodesics on a Riemann surface of genus
greater than or equal to two.

16.1 Geodesic Deviation

Recall the geodesic equation of Riemannian geometry

ẍi + Γijkẋ
j ẋk = 0

Γijk =
1

2
gil [∂jglk + ∂kglj − ∂lgjk]

Here ẋ = dxi

dt and the �time� t has the geometric meaning of the distance
measured along the geodesic (arc length).

Suppose we consider an in�nitesimally close geodesic, xi(t) + ui(t) for some
small ui. This quantity ui is a vector �eld de�ned along the geodesic: it connects
a point in the original geodesic to one on the new geodesic nearby. By taking
the in�nitesimal variation

üi +
[
ul∂lΓ

i
jk

]
ẋj ẋk + 2Γijkẋ

j u̇k = 0

We must rewrite this equation in terms of the covariant derivative of u so
that its invariance under change of co-ordinates is made explicit.
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Dui

dt
=
dui

dt
+ Γijkẋ

juk

D2ui

dt2
=

d

dt

[
dui

dt
+ Γijkẋ

juk
]

+ Γilmẋ
l

[
dum

dt
+ Γmjkẋ

juk
]

Expanding,

D2ui

dt2
= üi + ẋl

[
∂lΓ

i
jk

]
ẋjuk + Γijkẍ

juk + 2Γijkẋ
j u̇k + ΓilmΓmjkẋ

lẋjuk

We then use the geodesic equation to eliminate ẍi and its variation to elim-
inate üi.

D2ui

dt2
= −

[
ul∂lΓ

i
jk

]
ẋj ẋk + ẋl

[
∂lΓ

i
jk

]
ẋjuk − Γijku

k
[
Γjlmẋ

lẋm
]

+ ΓilmΓmjkẋ
lẋjuk

Collect all the di�erent terms into the geodesic deviation equation of
Jacobi

D2ui

dt2
+Rijklu

j ẋkẋl = 0

where

Rijkl = ∂jΓ
i
kl − ∂kΓijl + ΓijmΓmkl − ΓikmΓmjl

is the Riemann tensor or curvature tensor. It describes how nearby
geodesics deviate from each other. It is obvious that

Rijkl = −Rikjl
If we lower the index and place it as the third index (sorry, this is the

convention)

Rjkml = Rijklgim

it has additional symmetries

Rjklm = −Rjkml

Rjklm = Rlmjk

These symmetries are conveniently summarized by the statement that the
Riemann tensor is a bi-quadratic form. That is,we can de�ne a function of
two vectors

R(u, v) = Rjklmu
jvkulvm
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which is quadratic in each argument

R(�u, �v) = �2R(u, v)

and such that

R(u, v) = R(v, u), R(u, u) = 0.

Conversely, any such function of a pair of vectors de�nes a tensor with the
above symmety properties of the Riemann tensor.

We can now derive an equation for the distance between nearby geodesics:

1

2

d2∣u(t)∣2

dt2
=

∣∣∣∣Dudt
∣∣∣∣2 −R(ẋ, u).

Suppose the initial conditions for the Jacobi equation are

u(0) = 0,
Dui

dt
(0) = w.

That is, we consider two geodesics starting at the same point but with
slightly di�erent initial velocities.

Then

∣u(t)∣2 = t2∣w∣2 − t3

3
R(w, ẋ) + O(t4).

The �rst term is the rate of divergence of geodesics in Euclidean space. If
R(w, ẋ) > 0, the geodesics will come closer together than they would have in
�at space.

If R(w, ẋ) < 0, the geodesic with tangent vector ẋ is unstable with respect
to an in�nitesimal perturbation in the direction w: the points on it will move
farther apart with time. This basic principle is behind many deep theorems of
Riemannan geometry.

If the curvature at every point and with respect to any pair of vectors is
negative, every geodesic has to move away from every other. If in addition, the
diameter of the space is �nite, the only way they can continue to move away
from each other is to produce chaos: small changes in theinitial conditions lead
to unpredictable behavior over long time. Just such a situation is created when
we study a Riemann surface of genus greater than one.

16.2 The Laplace Operator

We saw that the geodesics are a hamiltonian system with hamiltonian

H =
1

2
gijpipj

and Poisson brackets
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{
pk, x

j
}

= �jk

etc. Thus the corresponding quantum theory will have wave functions that
are square integrable functions of x on which momentum is represented as a
di�erential opeartor

pk = −i∂k
The hamiltonian them becomes a second order derivative operator. The

second di�erentiation must be a covariant derivative in order to be independent
of co-ordinates. Thus

H = −1

2
gijDi∂j 

This is (up to a factor or a half) the Laplace operator of a Riemannian
manifold. Its eigenvalues are important quantities in geometry: we see that
they have the meaning as the energy levels of a quantum particle moving on
the Riemannian manifold. Thus we should expect that there is a semi-classical
formula that approximately relates the lengths of geodesics (the action of classi-
cal trajectories) to the eigenvalues of the laplacian (the quantum energy levels).
Weyl derived such asymptotics in a famous paper �Can we hear the shape of a
drum�? The eigenvalues of the Laplacian also has the meaning of the natural
frequencies of vibration in accoustics. He was asking if from the eigenvalues we
can reconstruct the underlying geometry. It turns out that we can more or less
do this, also there are distinct (non-isometric) Riemannian manifolds with the
same spectrum for the laplacian.

A modern version of such an asymptotic formula is due to Gutzwiller. Sel-
berg had derived many years ago a deep formula for the special case of a space
of constant curvature (symmetric space) relating the lengths of geodesics to
eigenvalues of the Laplacian. See D. A. Hejhal, The Selberg Trace Formula for

PSL2(R), Springer NY 1976.
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Fluid Mechanics
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