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We consider the two-dimensional �2D� classical lattice Coulomb gas as a model for magnetic field induced
vortices in 2D superconducting networks. Two different dynamical rules are introduced to investigate driven
diffusive steady states far from equilibrium as a function of temperature and driving force. The resulting steady
states differ dramatically depending on which dynamical rule is used. We show that the commonly used driven
diffusive Metropolis Monte Carlo dynamics contains unphysical intrinsic randomness that destroys the spatial
ordering present in equilibrium �the vortex lattice� over most of the driven phase diagram. A continuous time
Monte Carlo �CTMC� method is then developed, which results in spatially ordered driven states at low
temperature in finite sized systems. We show that CTMC is the natural discretization of continuum Langevin
dynamics, and argue that it gives the correct physical behavior when the discrete grid represents the minima of
a periodic potential. We use detailed finite size scaling methods to analyze the spatial structure of the steady
states. We find that finite size effects can be subtle and that very long simulation times can be needed to arrive
at the correct steady state. For particles moving on a triangular grid, we find that the ordered moving state is
a transversely pinned smectic that becomes unstable to an anisotropic liquid on sufficiently large length scales.
For particles moving on a square grid, the moving state is a similar smectic at large drives, but we find
evidence for a possible moving solid at lower drives. We find that the driven liquid on the square grid has long
range hexatic order, and we explain this as a specifically nonequilibrium effect. We show that, in the liquid,
fluctuations about the average center of mass motion are diffusive in both the transverse and longitudinal
directions.
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I. INTRODUCTION

While the theory of phase transitions of systems in ther-
modynamic equilibrium is a well established and mature area
of statistical physics, much less is established about analo-
gous critical behavior in driven steady states far from equi-
librium. As has been the case in the study of equilibrium
phase transitions, the use of lattice models, in which the
degrees of freedom are constrained to sit on the sites of a
discrete periodic grid, has led to analytical simplifications
and greater accuracy in numerical simulations for investigat-
ing such steady states, as compared to corresponding con-
tinuum models.1 One advantage of a lattice gas model for
numerical simulations of driven interacting many-body sys-
tems is that particles hop in discrete jumps. If a particle sits
in a local potential minimum, the lattice gas dynamics can
allow the particle to hop over the energy barrier out of the
minimum in a single move. In contrast, in continuum simu-
lations such as molecular dynamics, considerable simulation
time can be wasted at low temperatures waiting for a thermal
excitation that will excite the particle over the energy barrier.
The lattice gas method can therefore hope to simulate out to
much longer effective times, and focus on effects due to
many-body interactions rather than single body potentials.

One of the first, and still one of the most commonly used,
numerical methods to simulate driven steady states of a lat-
tice gas is the driven diffusive Monte Carlo method. This
method, introduced by Katz, Lebowitz, and Spohn,2 extends
familiar equilibrium Monte Carlo methods to the case of
driven nonequilibrium states. The key idea of this method is

to include the work done by the driving force on a moved
particle, in addition to the change in interaction energy, when
computing the energy difference to use in the Monte Carlo
test for making moves. Such a term biases motion in the
direction of the driving force, and, with the use of periodic
boundary conditions, results in a steady state with a finite
particle current. This algorithm, which satisfies local detailed
balance for individual particle moves, seeks to model diffu-
sively moving particles in the limit where motion is domi-
nated by thermal activation over energy barriers, rather than
microscopic dynamics. The hope is that the main qualitative
features of the driven steady states, and possible phase tran-
sitions between them, will be independent of the details of
the microscopic dynamics, and so will be captured by this
algorithm.

However, unlike equilibrium simulations, where any dy-
namics that satisfies detailed balance is sufficient to generate
the correct equilibrium Gibbs ensemble and so equilibrium
averages are in principal independent of the microscopic dy-
namics, there is no such guarantee for nonequilibrium states.
Even for sets of dynamics that would appear to lie within the
same dynamic “universality class”3 from the viewpoint of
symmetry and conserved quantities, averages in driven
steady states far from equilibrium may conceivably be quali-
tatively, not just quantitatively, different.

In this work we test this notion explicitly by considering
two different versions of driven diffusive Monte Carlo dy-
namics, both intended to model the overdamped diffusive
limit. We consider first �i� driven diffusive Metropolis Monte
Carlo �DDMMC� dynamics1,2, where the standard Metropo-
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lis method is used to select attempted excitations and decide
whether or not to accept them. We then consider �ii� driven
diffusive continuous time Monte Carlo �CTMC� dynamics,
where the continuous time Monte Carlo method4,5 is used to
make a rejectionless dynamics. We believe that our work is
the first application of continuous time Monte Carlo in the
context of driven diffusive problems. We apply these meth-
ods to the problem of the driven two-dimensional �2D� clas-
sical one component lattice Coulomb gas, which serves as a
model for logarithmically interacting, magnetic field in-
duced, vortices in periodic 2D superconducting networks.6

We consider both the cases of a triangular and a square grid
of sites. This model is of interest because it allows one to
consider the effect of a uniform driving force on a system
which has spatially ordered states in equilibrium �the vortex
lattice�, in contrast to simpler nearest-neighboring Ising-like
lattice gas models,7 which, in general, have no such periodic
spatial order.

We find that our two dynamics result in dramatically dif-
ferent driven steady states, when the system is acted upon by
a uniform applied force F. We find that over most of the
T-F phase diagram, the DDMMC method results in a spa-
tially disordered moving steady state with a very short trans-
lational correlation length. We argue that this behavior is due
to intrinsic randomness in the DDMMC algorithm, that is
sufficient to disorder the moving system even at T=0. In
contrast, we find that the CTMC method, at least for finite
size systems, can result in spatially ordered moving steady
states, as well as orientationally ordered moving liquids. We
demonstrate that the CTMC method is the correct discretiza-
tion of diffusive Langevin dynamics in a certain limit, and
argue that it more generally describes motion when the dis-
crete grid is thought of as representing the minima of a one
body periodic potential, and the energy barriers of this po-
tential are large compared to the energy change of hopping
between minima. Thus we believe that CTMC is not only a
more interesting dynamics, but also a more physically cor-
rect one. For CTMC dynamics, we carry out detailed finite
size scaling analyses of our ordered steady states, and show
that there can be subtle finite size effects due to diverging
correlation lengths at low temperatures. We also show that
exceedingly long simulations are needed, in some cases, in
order to arrive at the correct steady state distribution.

The remainder of this paper is organized as follows. In
Sec. II we define in detail our Coloumb gas model and our
two lattice gas dynamics. We discuss qualitative behaviors to
be expected at low temperatures, and define the observables
we will measure. In Sec. III we present the results of our
simulations on a triangular grid of sites. We show the phase
diagrams of both the DDMMC and CTMC for a system of a
given finite size, and demonstrate the dramatic difference
between them. We then focus the remainder of our work on
CTMC. We carry out detailed finite size scaling analyses to
study the structural order of the moving steady states in both
the high drive and low drive limits. At low temperature we
find an ordered moving smectic state, however, we argue that
this state is ultimately unstable to a liquid on sufficiently
large length scales. We also present results for dynamic be-
havior, studying the average velocity of the system and the
diffusion of the system about its center of mass motion. In

Sec. IV we present our results for simulations on a square
grid of sites. We study several specific points in the phase
diagram representative of the high drive and low drive limits.
Unlike for the triangular grid, we find that the structure of
the ordered moving state appears to have different periodici-
ties at different driving forces. We carry out finite size scal-
ing to investigate the stability of the ordered states in the
large size limit. We show that, unlike the liquid state in equi-
librium, the liquid driven steady state possesses long range
hexatic orientational order. In Sec. V we discuss our results
and present our conclusions.

Some aspects of this work, focusing on the differences
between DDMMC and CTMC and the structural order of
driven states on the triangular grid, have previously appeared
as a letter.8 The detailed discussion of the phase diagram on
the triangular grid, the finite size scaling analyses, the dis-
cussion of dynamical behavior, and all results for the square
grid, are new to the current work.

II. MODEL AND METHODS

A. Coulomb gas model

Our model is a classical one component lattice Coulomb
gas of 2D interacting charges, which may be taken as a
model for interacting vortices in a 2D superconducting
network.6 The charges are constrained to sit on the discrete
sites i of a periodic 2D grid. If the basis vectors of the grid
are �â1 , â2�, we take the grid to have finite length L� in
direction â� and we take periodic boundary conditions in
both directions. The Hamiltonian is given by6

H =
1

2�
i,j

�ni − f�G�ri − r j��nj − f� , �1�

where the sum is over all pairs of sites i, j of the grid, ni
� �0,1� is the integer charge on site i, −f is a fixed uniform
neutralizing background charge, and G�r� is the 2D lattice
Coulomb potential which solves

�2G�r� = − 2��r,0, �2�

where �2 is the discrete Laplacian for the grid. Defining �2

appropriate to periodic boundary conditions results in a G�r�
that satisfies periodic boundary conditions. For separations
large compared to the grid spacing, but small compared to
the grid length �1� �r��L�, one has G�r��−ln�r�. The con-
dition that the total energy remain finite imposes the charge
neutrality condition

�
i

ni = fL1L2 � Nc. �3�

We will consider first the case of a triangular grid of sites.
Here the basis vectors are

â1 = x̂ ,

â2 =
1

2
x̂ +

	3

2
ŷ �4�

and the sites i of the grid are specified by the position vectors
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ri = m1â1 + m2â2, �5�

m� � �0,1,…,L� − 1� .

The geometry of this real space grid is illustrated in Fig. 1�a�.
The solution to Eq. �2� will be given in terms of its Fou-

rier transform. The basis vectors of the reciprocal to the grid
in Fourier transform space are then

b1 = 2�x̂ −
2�

	3
ŷ ,

b2 =
4�

	3
ŷ , �6�

and the allowed wave vectors consistent with periodic
boundary conditions are given by

k = k1b1 + k2b2,

k� � 
0,
1

L�

,…,
L� − 1

L�
� . �7�

Equivalently, one could translate the above wavevectors by
an appropriate linear combination of the basis vectors
�b1 ,b2� so that they all lie in the hexagonal shaped first Bril-
louin zone of the reciprocal grid. The geometry of these al-
lowed wavevectors is illustrated in Fig. 1�b�.

Defining â3� â1− â2, the discrete Laplacian for the trian-
gular grid is given by

�2G�r� � c�
�=1

3

�G�r + â�� − 2G�r� + G�r − â�� �8�

with c an appropriate geometrical constant to give the correct
continuum limit. Taking the Fourier transform of the above,
we find that the solution to Eq. �2� is given by6,9

G�r� =
�

cN
�
k�0

eik·r

3 − cos�k · â1� − cos�k · â2� − cos�k · â3�
,

�9�

where N=L1L2 is the number of sites in the grid, and the sum
is over all the allowed wave vectors of Eq. �7�. The correct

value of the geometric constant is c=1/	3. However, in or-
der to compare with previous work done on this model,6 we
will make the choice c=2/3. This difference amounts only to
a rescaling of the temperature.

We will also discuss the case of a square grid of sites.
Here the real space basis vectors of the grid are �â1 , â2�
= �x̂ , ŷ�, the basis vectors of the reciprocal space are
�b1 ,b2�= �2�x̂ ,2�ŷ�, and the lattice Coulomb potential is
given by6,9

G�r� =
2�

N
�
k�0

eik·r

2 − cos�k · â1� − cos�k · â2�
. �10�

B. Lattice gas dynamics

Our goal is to simulate the nonequilibrium steady states of
the lattice Coulomb gas when driven by a uniform applied
force F. For equilibrium simulations, any dynamical rule that
satisfies detailed balance will converge to the correct equi-
librium ensemble; the details of the dynamics may effect the
speed of convergence, but they are otherwise irrelevant for
computing time-independent thermodynamic averages. For
nonequilibrium steady states, however, even time-
independent averages may depend on the details of the mi-
croscopic dynamics. Here we consider two different micro-
scopic dynamics for the simple case of over damped
diffusively moving particles �the simplest case in the classi-
fication scheme of dynamic critical phenomena by Halperin
and Hohenberg3�. Both dynamics involve single-particle
moves only. We find that, for finite size systems, the resulting
steady states for these two dynamics can be qualitatively
different.

1. Driven diffusive metropolis Monte Carlo (DDMMC)

The first lattice gas dynamics we consider is the com-
monly used driven diffusive Metropolis Monte Carlo1,2

�DDMMC� dynamics. This algorithm was introduced as a
simple modification of ordinary equilibrium Metropolis
Monte Carlo. It was intended to model the steady states of a
driven system in the limit where motion is dominated by
thermal activation over energy barriers, and so presumably is
not very sensitive to microscopic details. The DDMMC al-
gorithm is defined as follows. At each step of the simulation
a charge ni=1 is selected at random, and the charge is then
moved a test displacement �r to a randomly chosen nearest-
neighbor site. For the triangular grid, �r is chosen with equal
probability from the six possible directions ±â�, �=1, 2, 3.
If Hold and Hnew are the interaction energies, Eq. �1�, of the
system before and after this test move is made, one computes
the energy difference

�U = Hnew − Hold − F · �r , �11�

where the last term is the work done by the applied force on
the moved charge. This test move is then accepted or rejected
according to the usual Metropolis criterion

FIG. 1. �a� Triangular grid of size L1�L2 with basis vectors â1

and â2. �b� Reciprocal space to the triangular grid, with basis vec-
tors b1 and b2. Allowed wave vectors for Fourier transforms of real
space quantities can be restricted to the hexagonal first Brillouin
zone shown in �b�.
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accept if e−�U/T � r ,

reject if otherwise,
�12�

where r is a random variable uniformly distributed on �0, 1�.
One pass of Nc such steps equals one unit of simulation time.
The term in Eq. �11� proportional to the force F biases moves
parallel to F and, in conjunction with the periodic boundary
conditions, will in general set up a steady state with a finite
current of particles moving parallel to F. Time-independent
averages are computed in the usual Monte Carlo way, as a
direct average over configurations sampled every Npass
passes.

2. Driven diffusive continuous time Monte Carlo (CTMC)

The second dynamics we consider, and the one which is
used for the main part of our work presented here, we call
driven diffusive continuous time Monte Carlo dynamics
�CTMC�. The algorithm is defined as follows. Starting from
a particular initial configuration, we denote by �i�� the single
particle move of a charge ni=1 on site ri, to its nearest-
neighbor site in direction �̂. For the triangular grid, �̂
� �±â1 , ± â2 , ± â3�. For a grid in which each site has z nearest
neighbors, the total number of such possible single particle
moves is zNc. For each such move, we compute the energy
change �Ui� according to Eq. �11�, and define a probability
rate for making this move

Wi� = W0e−�Ui�/2T, �13�

where 1/W0 sets the unit of time. Note that the above rates,
as well as the Metropolis rates of DDMMC set by Eq. �12�,
obey a local detailed balance. If s is an initial state, and s� is
the state reached from s by making the single particle move
�i��, then,

W�s → s��
W�s� → s�

= e−�Ui�/T. �14�

Although systems out of equilibrium do not in general need
to satisfy detailed balance, local detailed balance is physi-
cally reasonable if we wish to regard each charge as moving
in a local potential determined by its interactions with the
other charges and with the applied force.

Having specified the rates of Eq. �13�, we determine
which move to make by regarding all zNc of the possible
single particle moves as independent Poisson processes. The
probability that the next move will be �i�� is then

Pi� =
Wi�

�
�j	�

Wj	

�15�

and the average time it takes to make this move is

�t =
1

Wtot
�

1

�
�j	�

Wj	

. �16�

We thus make a move by sampling the probability distribu-
tion Pi� of Eq. �15�, and then update the simulation clock by
the amount �t of Eq. �16�. Averages of observables O are
computed as

�O� =
1



� O�t�dt =

1



�

s

Os�ts, �17�

where s labels the steps of the simulation, Os is the value of
O in the configuration at step s, �ts� ts+1− ts is the time spent
in the configuration at step s according to the simulation
clock, and 
=�s�ts is the total time of the simulation. As in
DDMMC, we will refer to Nc simulation steps as one pass
through the system.

The above algorithm is a straightforward extension of the
equilibrium continuous time Monte Carlo algorithm,5 but we
believe that this is its first application in the context of driven
nonequilibrium steady states. The method was first intro-
duced as the “n-fold way” for spin models.4 It owes its name
to the continuous variations in the time steps �ts, which vary
from configuration to configuration, according to the energy
barriers present in each configuration. It is a rejectionless
algorithm designed to speed up equilibration at low tempera-
tures. Rather than waste many rejected moves until a rare
acceptance takes one up and over an energy barrier, the en-
ergy barriers �Ui� themselves set the time scale for each
move, which then happens in a single simulation step. Simu-
lation clock times can vary over orders of magnitude as ei-
ther T or the height of the energy barriers vary.

In CTMC there are many possible choices for the rates
Wi� that would satisfy local detailed balance. In Appendix A
we show that the particular choice of Eq. �13�, with W0
=cDT �D is the diffusion constant�, is the natural discretiza-
tion to a periodic grid of sites of over damped continuum
Langevin dynamics, and that the continuum limit is reached
when �Ui��T. Our simulations, however, being generally at
low T or large F, are mostly in the opposite limit of �Ui�
�T. To see what physical situation this limit corresponds to,
consider a single particle moving on a one dimensional grid
of sites, in a driving force F. According to the CTMC algo-
rithm, the average distance traveled in one step is

��x� =
eF/2T − e−F/2T

eF/2T + e−F/2T , �18�

while the average time for this step is given by

1

�t
= Wtot = W0�eF/2T + e−F/2T , �19�

leading to an average velocity

�v� =
��x�
�t

= 2W0sinh�F/2T� . �20�

At low ratios of F /T the velocity is linear in the applied
force �v��W0F /T; at large F /T, the velocity grows expo-
nentially, �v��W0eF/2T. We can compare the above result to
that of an over damped particle moving in a continuum
“washboard potential” U�x�=−U0cos�2�x�−Fx, which has
been studied by Ambegaokar and Halperin in the context of
a driven Josephson junction.10 The average velocity that they
find agrees exactly with Eq. �20� above, if one is in the limit
T�2U0 and F�2�U0, and one identifies
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W0 = 2�U0D	1 − 2e−2U0�	1−2+ sin−1/T, �21�

where D is the diffusion constant and �F /2�U0. For small
 the above W0 reduces to a form independent of the drive F,

W0 � 2�U0De−2U0/T, when F � 2�U0, �22�

which is the rate for activation over an energy barrier of 2U0.
CTMC thus describes the limit where the grid sites represent
the minima of a periodic pinning potential, and the applied
force is weak enough that motion is due to thermal activation
of particles, one at a time, over the barriers of this periodic
potential. It is unclear11 if CTMC can qualitatively describe
the very large drive limit F�U0, where the washboard po-
tential loses its local minima parallel to F, and the average
velocity again becomes proportional to F. For the results
reported in the following sections we will measure time in
units where W0=1, independent of the temperature T or driv-
ing force F.

3. Behavior at low temperature

To get a better feel for the behavior of the above two
lattice gas dynamic algorithms, we can consider their behav-
ior at low temperature. In the limit T→0, the DDMMC will
reject all moves except those that lower the energy, i.e.,
�Ui��0. If one starts initially in the F=0 ground state and
increases F, all moves will be rejected until F reaches a
critical value Fc equal to the interaction energy associated
with moving one charge forward one grid spacing parallel to
F. The ordered ground-state charge lattice will therefore be
pinned with �v�=0 for F�Fc, and moving with �v� finite for
F�Fc.

Next we consider DDMMC at T=0 with F�Fc, so that
the work done by the force in Eq. �11� dominates the inter-
action energy �H. In this case, the DDMMC algorithm ran-
domly picks a charge, and then randomly picks a direction in
which to move it. The move will be accepted only if it low-
ers the energy, i.e., if the charge advances in the direction of
F. This will happen only for a certain fraction p of the pos-
sible directions. For a triangular grid, with F aligned with
one of the grid basis vectors, three of the six possible
nearest-neighbor directions will have a component parallel to
F and so p=1/2; for a square grid, p=1/4. Thus, after one
pass through the system, a randomly selected fraction p of
the charges have advanced forward, while the rest remain in
place. After a second pass through the system, a different
randomly selected fraction p move forward. After many such
passes one expects the system to be disordered. In fact, we
find from simulations that, at T=0, DDMMC disorders the
ground-state charge lattice for all F�Fc. The randomness of
choosing moves, inherent in the DDMMC algorithm, is suf-
ficient to disorder the moving system even as T→0.

We now consider the low-T behavior of CTMC. For
specificity we will consider the case of a triangular grid with
a charge density of f =1/25, and F=Fâ1 aligned along one of
the grid axes. We will study this particular case in great
detail in Sec. III. Consider the limit T→0, starting in the F
=0 ground state and then increasing F, but with F�Fc. The
configuration of charges in the F=0 ground state is shown in
Fig. 2�a� for a 25�25 grid. Since CTMC is a rejectionless

algorithm, even when F�Fc CTMC will make an excitation
out of the ground state. However since �U�0 for this exci-
tation, the time �t for this excitation to occur diverges expo-
nentially as T→0. Conversely, once an excitation has been
made, the very next move will be to relax the excitation back
to the ground state, since this is the only move for which
�U�0; moreover, since �U�0, this move takes place in an
exponentially vanishing time. Thus alternating steps of
CTMC will consist of displacing a randomly selected single
charge and then moving it back. As T→0, the simulation
clock time to be in the ground state grows exponentially
large, while the clock time to be in the excited state gets
exponentially small. The system therefore remains pinned in
the ground state, with the time in the excited states contrib-
uting negligibly to any measured averages.

Next, consider what happens when F�Fc. Because of the
rates of Eq. �13�, as T→0 only moves with the smallest
value of �Ui���Umin can be selected; all other possible
moves are exponentially suppressed. This results in the main
difference between CTMC and DDMMC. In CTMC, as T
→0, motion is deterministic except for choosing randomly
among moves with degenerate values of �Umin. Now con-
sider starting in the F=0 ground state shown in Fig. 2�a�. All
moves that advance a charge forward one grid spacing along
â1 are equally likely, with �Umin,1=Fc−F�0, while moves
in all other directions are exponentially suppressed. Thus the
first step will be to select any one of the Nc charges at ran-
dom and move it forward. On the second step, however,
there are only two moves that have the new lowest �Umin,2;
these are to advance either the charge immediately in front

FIG. 2. CTMC on a triangular grid with charge density f
=1/25 at T→0 and F�Fc, with F parallel to the â1 axis. �a�
Ground-state charge lattice for a 25�25 triangular grid. Numbers
denote the locations of the charges in the ground state. The value of
each number indicates the step on which that charge moves for-
ward. �b� The change in interaction energy �H at each step as
charges move forward. • are for a 25�25 grid and correspond to
the moves in �a�; � and � are the beginnings of similar sequences
for 50�50 and 100�100 grids.
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of, or the charge immediately behind, the charge that moved
in the first step. On the third step there are similarly only two
moves with �Umin,3; advancing the charge immediately in
front of, or immediately behind, the first two moved charges.
The system proceeds in a similar manner until all charges in
the same row parallel to F have moved forward. The next
move will be to pick a charge at random in one of the two
adjacent charge filled rows and move it forward, and then
subsequently all charges in that row move forward one by
one. In this manner, the rows of charges move one after
another forward until the system has returned to the starting
ground state, but with the entire charge lattice advanced by
one grid spacing. In Fig. 2�a� we label each of the ground-
state charges by the step number on which that charge moved
forward in one particular pass of CTMC on a 25�25 size
grid. The pattern described above is clearly evident. In Fig.
2�b� we plot the change in interaction energy �H=�Umin,n
+F, for each step n of this pass; note that �H is independent
of the applied force F. The rough oscillation of �H with a
period of n=L1 /a0, with a0=1/	f the spacing between the
charges, reflects the row by row motion of the charges.

Next we consider the timing of the above sequence of
moves. From Fig. 2�b� we conclude that for each step n�1
of the above pass Umin,n�Umin,1. Hence the rate �13� to make
any step n�1 is exponentially larger than the rate to make
the first step n=1. As T→0 we conclude that the relative
time spent in the intermediate states �i.e., the states after
steps n=1,… ,Nc−1� as compared to the time spent in the
ordered ground state �prior to the first step and after step n
=Nc� vanishes exponentially. According to the simulation
clock time, all charges in the ground-state charge lattice have
advanced forward one grid spacing essentially simulta-
neously. This is the deterministic motion of the charge lattice
that one would physically expect to find for F�Fc as
T→0.

There is, however, one peculiar aspect to the above T
→0 dynamics. By the above arguments, the velocity of the
moving charge lattice will be proportional to the rate to make
the initial first step. From Eqs. �13� and �16� this rate will be
Wtot=NcW0e−�Umin,1/2T. Thus the T→0 velocity grows pro-
portional to the number of charges Nc in the system. How-
ever, this can be understood physically if one views motion
on the discrete grid as being a representation for continuum
motion in a periodic potential. In this case, one should take
W0�e−2U0/T, as in Eq. �22�, where 2U0 is the maximum to
minimum energy difference of the potential. In the term Wtot
above, the factor W0 represents the rate for a particular
charge to be excited out of the ground state, over the energy
barrier 2U0 into the neighboring down stream potential mini-
mum, thus lowering the energy of the system by �Umin,1.
This rate becomes exponentially slow as T→0. Once this
initial excitation has taken place, all the other charges follow,
advancing forward in what may be regarded as an “ava-
lanche.” We call this an avalanche because all the other
charges move forward in a time that becomes vanishingly
small compared to the time to make the initial excitation.
The factor Nc in Wtot just reflects the Nc possible sites at
which the initial excitation that leads to the avalanche can
occur. Thus, while Wtot grows as Nc, it also vanishes expo-
nentially as T→0, and so at T=0 the charges are always

pinned, as is physically appropriate for Fc�F�U0.
Several features of the expected behavior at finite T can

also be inferred from Fig. 2�b�. Once a first charge in a given
row has moved forward, the energy change for the other
charges in the same row to move forward rapidly decreases.
Consequently, once the first charge has moved forward, the
remaining charges in that row rapidly follow forward. How-
ever, once a row has completely moved forward, the energy
for the first charge in an adjacent row to move forward is not
much lower than the energy for a first charge in any other
row to move forward. Comparing the values of �H in Fig.
2�b� for steps n=1 and n= �L1 /a0�+1, we estimate this en-
ergy difference as �E�0.008. We therefore expect that once
the temperature T becomes of the same order as this �E,
coherence between moving rows will be lost. Avalanches
will now consist of individual rows moving forward, but
different rows will be uncorrelated. Consequently, the aver-
age velocity in this regime will scale proportionally to L1 /a0
�the number of sites in a given row for an initial excitation to
occur� rather than Nc. The details of this picture will depend
on the specific correlations between charges within a given
row, versus between rows, and this will be a subject of in-
vestigation in Sec. III.

C. Observables

To determine the properties of our nonequilibrium steady
states, we measure several static �time-independent� and dy-
namic �time-dependent� quantities. To determine structural
properties, the main quantity of interest is the structure func-
tion

S�k� �
1

Nc
�nkn−k� , �23�

where

nk = �
i

eik·rini, �24�

is the Fourier transform of the charge distribution ni, and k is
one of the allowed wave vectors in the first Brillouin zone
�shown in Fig. 1�b� for the triangular grid. The correspond-
ing real space correlation function is given by

C�m1,m2� �
1

N
�

k1,k2

e−2�i�m1k1+m2k2�S�k1,k2� , �25�

where we have expressed the positions ri and wave vectors k
in terms of their coordinates m� and k�, as in Eqs. �5� and
�7�, in constructing the above Fourier transform. We will also
consider the mixed correlation

C�k1,m2� �
1

N
�
k2

e−2�im2k2S�k1,k2� . �26�

The above quantities give information about the transla-
tional order of the system. To investigate the orientational
order, we define the six-fold orientational �hexatic� order pa-
rameter
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�6 �
1

Nc
�

i

1

zi
�

j

e6i�ij . �27�

In the above, the first sum is over all charges ni=1, the sec-
ond sum is over all charges nj =1 that are nearest neighbors
of ni, zi is the number of such nearest neighbors, and �ij is
the angle of the bond from ni to nj with respect to the â1 axis.
Nearest neighbors are determined by Delaunay
triangulation.12

We also measure several dynamical quantities. Let

Rc.m.�t� �
1

Nc
�
s�t

�rs �28�

be the net displacement of the center of mass of the charges
at time t of the simulation clock. The right-hand side of the
above is just the sum of charge displacements at each step s
of the simulation that occurs before the simulation clock has
reached time t, normalized by the total number of charges.
The average velocity of the system is then just

vave =
Rc.m.�
� − Rc.m.�teq�


 − teq
, �29�

where 
 is the total simulation clock time and teq is some
initial time to allow for equilibration. In the analogy between
2D charges and vortices in a superconducting film, the aver-
age charge velocity becomes the average voltage drop trans-
verse to the direction of motion of the vortices.

We also look at the fluctuations about the average center
of mass position. If we define the fluctuation, after a time t,
about the average center-of-mass position

�R�t;t0� � Rc.m.�t + t0� − Rc.m.�t0� − vavet , �30�

then we can define the diffusion tensor D�t� by

2D�t�t � Nc��R�t;t0��R�t;t0��t0
, �31�

where the angular brackets in the above denote an average
over the parameter t0 during the course of a single simula-
tion. In averaging over t0, we restrict ourselves to nonover-
lapping intervals, i.e., to the values t0=nt, for integer n, so as
to reduce correlations among the different terms being aver-
aged. If fluctuations about the center of mass are diffusive,
then we expect D�t� to saturate to a constant as t increases.
The factor Nc on the right-hand side of Eq. �31� ensures that
D�t� approaches a size-independent value in the liquid state,
where the charges have only short ranged correlations.

Although in our simulation we will use Eq. �31� to com-
pute D�t�, the diffusion tensor can also be expressed in its
more familiar form, in terms of velocity correlations.13 If we
define the instantaneous fluctuation in velocity by

�v�t� � v�t� − vave = �R��t;t�/�t , �32�

then

lim
t→�

D�t� =
Nc

2
�

−�

�

dt��v�t��v�0�� . �33�

For a superconducting network, where vortex velocity is pro-
portional to the voltage drop in the direction transverse to the

vortex motion, D is a measure of the voltage fluctuations.
In equilibrium, when F=vave=0, D /T is proportional to

the charge mobility tensor by the fluctuation-dissipation
theorem.14 In the analogy to vortices in superconducting
films, this is the linear resistivity of the film. In the driven
state, with F=Fx̂, we will use the transverse component of
the diffusion tensor Dyy to test for the presence of transverse
pinning. If Dyy �0, the center-of-mass is diffusing trans-
versely to the direction of the average motion; application of
a small transverse force �Fŷ will cause the system to acquire
a transverse component of the velocity vy ��F. In analogy
with equilibrium, we will assume that if Dyy =0, there will be
no linear transverse response, i.e., vy /�F→0 as �F→0. This
characterizes a transversely pinned state.15

In CTMC, averages in the steady state are computed by
the time integral in Eq. �17�. However, the direct application
of Eq. �17� would require the evaluation of the measured
quantity after every single step of the simulation. For quan-
tities involving lengthy calculation, such as S�k� and �6, this
is not practical except for fairly short runs. Instead, we com-
pute the time integrals for these quantities by a Monte Carlo
integration,16 averaging them over Nconfig configurations
sampled randomly, with a uniform distribution, over the
simulation clock time interval �teq ,
�, with teq an initial
equilibration time and 
 the total simulation time. In practice,
we implement this scheme as follows. We compute the aver-
age time interval between samplings 
�= �
− teq� /Nconfig.
Then, after a first sampling, we determine the time until the
next sampling by drawing from an exponential distribution
with average time constant 
�. This gives the correct sam-
pling since, if t1� t2¯ � tn are the ordered values of n inde-
pendent and uniformly distributed random variables on a
given interval, the probability distribution for the distance
ti+1− ti is exponential. We use typically Nconfig�103 to 104 in
our simulations.

III. RESULTS ON A TRIANGULAR GRID

We now report our results for the case of charges on a
triangular grid. The equilibrium, i.e., F=0, behavior6 of this
system depends on the charge density f . For sufficiently
dense f �but not too dense�, there is only a single first order
melting transition at Tm, from a pinned charge solid with
long range translational order at low T, to an ordinary liquid
at high T. For more dilute f , there are three phases: a low-T
pinned solid with long-range translational order, an
intermediate-T floating solid with algebraic translational or-
der, and a high-T liquid. In this work we will consider the
charge density f =1/25, which falls in the dense limit with a
single first order equilibrium melting temperature of Tm
�0.0085. The dilute limit will be considered elsewhere.

A. Phase diagram

We start by mapping out the T-F phase diagram for a
60�60 grid, with the applied force along the â1 grid axis,
F=Fx̂. We initialize the system in the ordered F=0 ground
state, set F to the desired driving force, and then simulate the
system for increasing values of T. By measuring the average
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interaction energy �H�, structural properties such as S�k� and
��6�, and the average velocity vave, we determine the phase
diagrams shown in Fig. 3. Our simulations consist typically
of �105–106 passes through the system, depending on sys-
tem size and parameters.

Our results for the DDMMC dynamics are shown in Fig.
3�a�. As discussed earlier in Sec. II B 3, at T=0 the system
remains pinned �vave=0� in its equilibrium ground state for
all F below a critical force Fc=0.0603; for all F�Fc the
moving state is a liquid.8 For fixed F�Fc, upon increasing
T, the solid remains pinned with long range translational or-
der, up until a value Tp�F�. It then enters a moving state with
finite vave. Over most of the phase diagram we find8 that this
moving state is a liquid with a correlation length of order the
spacing between charges a0. Only in a very narrow region at
low F and higher T do we find a structure that appears to be
a moving smectic phase. We will discuss what we mean by a
“smectic” phase in greater detail when we describe our re-
sults from CTMC. For DDMMC we have not investigated in
any detail the stability of this small region of smectic phase

with respect to increasing the system size, or with respect to
cooling from the liquid. The lack of structure for almost all
of the moving state, particularly at large F and small T, sug-
gests that the DDMMC algorithm is indeed unphysical and
unlikely to be a good model for continuum dynamics. We
therefore focus on the CTMC algorithm for the remainder of
this paper.

In Fig. 3�b� we give the phase diagram for CTMC dynam-
ics. Again we find pinned, liquid, and smectic phases, but
now the smectic persists over a wide region of the T-F plane,
particularly at low T and large F. To illustrate the nature of
order in each of these phases, we plot in Fig. 4 the structure
function S�k� for several representative points in the phase
diagram. In Fig. 4�a� we see the sharp Bragg peaks with
S�K��Nc, characteristic of the long-range translational order
in the pinned solid phase. The peaks are at the reciprocal
lattice vectors of the ordered charge solid, and given by

Kp1,p2
= k1b1 + k2b2

with

k� =
p�

5
, p� = 0, ± 1, ± 2. �34�

Figure 4�b� shows a roughly circular and finite peak, charac-
teristic of short-range translational order in the moving liquid
phase.

Figures 4�c� and 4�d� show the moving smectic at small
and large driving forces, respectively. Consider first the large
drive case in Fig. 4�d�. The peaks along the k2 axis �k1=0� at
�k1 ,k2�= �0, ±1/5� and �0,±2/5� �see Fig. 1�b� for the
k-space geometry are sharp Bragg peaks with S�K��Nc.
This indicates that if one averages the particle density in the
â1 direction �k1=0�, the resulting density is periodic in the â2

direction with a period of five grid spacings; the particles are
therefore moving in periodically spaced channels oriented

FIG. 3. Phase diagram for a 60�60 triangular grid with charge
density f =1/25 as a function of temperature T and driving force
F=Fx̂, �a� for DDMMC dynamics and �b� for CTMC dynamics.
“PS” stands for pinned solid.

FIG. 4. S�k� for several points in the CTMC phase diagram of Fig. 3�b�. �a� F=0.02, T=0.0014 in the pinned solid; �b� F0.02, T
=0.008 in the moving liquid; �c� F=0.02, T=0.003 in the moving smectic; �d� F=0.10, T=0.004 in the moving smectic at higher drive. The
bottom row shows intensity plots of the corresponding graphs in the top row. The peak S�k=0�=Nc is removed to give greater contrast to
the other peaks.
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parallel to the driving force F=Fâ1. Next, note that the peaks
at finite k1= ±1/5, ±2/5 appear to be sharp, i.e., only one
grid spacing wide, along the k1 direction. Such
�-function-like peaks in the k1 direction indicate that the par-
ticles are periodically ordered within each smectic channel
with a period of five grid spacings. The finite width of these
peaks in the k2 direction indicates that the ordered smectic
channels are randomly displaced with respect to each other,
with a finite correlation length �� proportional to the inverse
width of the peak. Comparing Fig. 4�c� with 4�d�, we see
similar features at the smaller drive F, only the peaks at finite
k1 are now sharper, with a narrower width in the k2 direction.
In the next two sections we will consider these features of
the smectic phase in much greater detail, studying the scaling
behavior and stability of the smectic as the system size in-
creases.

Finally we consider the nature of the melting transition
Tm�F� from the smectic to the liquid, and the unpinning tran-
sition Tp�F� from the pinned solid to the smectic. In Figs.
5�a�–5�d� we plot the average interaction energy per site, E
= �H /N� vs. the number of simulation passes through the
grid. Each point represents an average over 3200 successive
passes. Figure 5�a� shows results at F=0.02, T=0.0042, just
at the melting transition Tm�F�. We see that the energy takes
a discontinuous jump as the system makes the transition
from smectic to liquid. Melting of the smectic is therefore
like a first order phase transition. Figure 5�b�, shows results

at F=0.02, T=0.0022, just above the unpinning transition
Tp�F�. We see that the energy fluctuations form a set of pla-
teaus, with a very long period of fluctuation. The lowest
plateau corresponds to the ordered F=0 ground state with a
value E0=0.03495736. The higher-energy plateau corre-
sponds to having some fraction of adjacent smectic channels
�i.e., charge filled rows� advanced one grid spacing parallel
to F, so that the system looks locally similar to the ground
state, but with one pair of domain walls parallel to F.

As T increases above Tp, Figs. 5�c� and 5�d� show that the
rate of fluctuations increase, and plateaus of additional en-
ergy values appear. The higher-energy plateaus correspond to
having more than one pair of domain walls in the otherwise
ordered system. This behavior may be understood by consid-
ering the results shown in Fig. 2�b�. For a driving force of
F=0.02, the thermal energy needed to excite a pair of adja-
cent particles in a given row to move forward is �U
=�Umin,1+�Umin,2�0.048; however, the energy to move
each remaining particle is �Umin,n�0. Thus, at low T, the
excitation of an initial pair forward will trigger the remaining
particles in that row to move forward almost instantaneously.
The rate for the initial pair excitation goes as W�e−�U/2T

vanishing exponentially as T decreases. The rate of energy
fluctuations decreases accordingly. At low T, once a given
row has moved forward, the next most favorable excitation is
to move an adjacent row of charges forward �see discussion
at the end of Sec. II B 3�. The system thus consists of a
single pair of domain walls in the otherwise ordered ground
state; the distance between the domain walls increases as
more adjacent rows move forward. Such states give the
higher of the two energy plateaus in Fig. 5�b�. As T in-
creases, there becomes a non-negligible probability to have a
pair excitation in a nonadjacent row of charges. Now the
system can develop more than a single pair of domain walls,
leading to the additional high energy plateaus of Figs. 5�c�
and 5�d�.

The above arguments suggest that Tp�F� may not be a true
phase transition. Since the above rate W is finite at any T, but
grows vanishingly small as T→0, the observed Tp�F� may
just result from 1/W growing larger than the longest simula-
tion time we can carry out. As F decreases, it will become
necessary to excite three, then four, then more, particles for-
ward in a given row, before one reaches the condition that
�Umin,n�0 triggering the remaining particles in the row to
move immediately forward �see Fig. 2�b�. Thus we expect
that W will decrease, and the observed Tp�F� will increase, as
F→0. Note that the graphs in Figs. 5�a�–5�d� are plotted
versus the number of simulation passes rather than the simu-
lation clock time. They therefore reflect the amount of actual
computation needed to observe fluctuations of the system.
The decrease in fluctuation rate observed as T decreases for
fixed F=0.02 �compare Fig. 5�d� to 5�b� results from the
decrease in probability to move the second particle of an
excitation pair forward, before the first particle has had a
chance to fall back into place, rather than being directly due
to the overall exponential decrease with T of all single par-
ticle rates as in Eq. �13�.

Finally we note that, for finite system size, the moving
smectic state is the true stable steady state of the system. In
Fig. 5�e� we plot the average interaction energy per site E

FIG. 5. �a�–�d� Average interaction energy per site E= �H /N� vs
the number of simulation passes through the grid. Each point rep-
resents an average over 3200 successive passes; �a� F=0.02, T
=0.0042, just at the melting transition Tm�F�; �b� F=0.02, T
=0.0022, just above the unpinning transition Tp�F�; �c� F=0.02, T
=0.0026; and �d� F=0.02, T=0.0032, moving away from the un-
pinning transition. �e� E vs simulation clock time t, for F=0.03, T
=0.003, slightly below the melting transition.
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versus simulation clock time t, for the parameters F=0.03,
T=0.003, which lies just immediately below the melting
transition Tm�F� �see Fig. 3�b�. Comparing with Fig. 5�a�,
we see clearly that the system has occasional fluctuations
into the liquid phase, as indicated by the large brief spikes in
energy. Such fluctuations are expected for a finite size system
near a first-order phase transition. The fact that the system
returns to the smectic state, after such a liquid fluctuation,
indicates that the smectic is indeed the stable steady state.
We have also succeeded in cooling into the smectic state
from the disordered liquid, and in entering the smectic from
the liquid by increasing F at temperatures above the mini-
mum of the Tm�F� transition boundary.

B. Smectic phase—High drive

In the next two sections we explore in detail the nature of
ordering in the moving smectic state, and its stability as the
system size increases. We start here by considering the smec-
tic in the high drive case at F=0.1, T=0.004, corresponding
to Fig. 4�d�. If the system has true long-range smectic order,
we expect the peaks in S�k� along the k2 axis �k1=0� to be
true Bragg peaks, with a height that scales as the system
area. In Fig. 6 we plot the height of the peak S�K01�, versus
system length L, for systems of size L�L. The straight line
on the log-log plot has a slope s�1.99 giving good agree-
ment with the �L2 behavior expected for long-range smectic
order.

Next we consider the ordering within the smectic chan-
nels. If charges have long-range order within each individual
channel, we expect the peaks in S�k� at k1= ±1/5, ±2/5 to
be �-function-like in the k1 direction. If the channels have
only short-range correlations between them, the width of
these peaks will remain finite in the k2 direction. We there-
fore expect that the heights of these peaks at finite k1 should
scale as the system length L1 in the â1 direction. In Fig. 6 we
plot the height of two of these peaks S�K11� and S�K21� �see
Eq. �34� for our notation labeling the reciprocal lattice vec-
tors K versus system length L, for systems of size L�L.
The straight lines have slopes s=1.15 and 0.96 respectively,
in reasonable agreement with the �L behavior described
above.

To further illustrate the above results, we plot in Fig. 7
profiles of S�k� along different paths through the first Bril-
louin zone, for various L�L system sizes. Figure 7�a� shows
S�k� vs k1 for fixed k2=1/5. The logarithmic vertical scale,
varying over five orders of magnitude, indicates how sharply
the peaks are confined to the values k1=1/5, 2/5; however,
S�k� appears to decrease continuously as one moves away
from the peak values. Figure 7�b� shows the peaks indicating
the smectic order, i.e., S�k� / fL2 versus k2 for fixed k1=0. We
see that the peaks, scaled by Nc= fL2, all have the same
height for the different L, in agreement with the scaling seen
in Fig. 6. The logarithmic vertical scale, dropping five orders

FIG. 6. Scaling of peak heights S�K� vs system size L for the
smectic phase at F=0.10, T=0.004. Straight lines indicate good
power law fits, S�K��Ls, with s�1.99 for K01, s�1.15 for K11,
and s�0.96 for K21.

FIG. 7. Profiles of S�k� in various directions, for different sys-
tem sizes L, for the smectic phase at F=0.10, T=0.004. �a� S�k� vs
k1 for fixed k2=1/5; �b� S�k� / fL2 vs k2 for fixed k1=0; �c�
S�k�a0 /L vs k2 for fixed k1=1/5; �d� S�k�a0 /L vs k2 for fixed k1

=2/5. Note the logarithmic scale in �a� and �b�.
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of magnitude as one moves a single grid point in k space
away from the peaks at k2=1/5, 2/5, shows that these are
indeed sharp Bragg peaks. In Figs. 7�c� and 7�d� we show the
peaks at finite k1, plotting S�k�a0 /L versus k2 for fixed k1

=1/5 and k1=2/5, respectively. We see that these profiles,
when scaled by 1/L, collapse reasonably well to a common
curve for the different sizes L, for all values of k2. This is in
agreement with the scaling found in Fig. 6, and suggests that
S�k� is indeed �-function-like in k1=1/5, 2/5 for all k2.

The finite widths in the k2 direction of the peaks in S�k� at
k1=1/5, 2/5 , which do not narrow as L increases, indicate
that the ordered smectic channels have only short-range cor-
relations between them. To see this explicitly, consider the
Fourier transform of the charge density in each row of the
grid at the wave vector corresponding to the periodic order-
ing within the smectic channels, i.e., k= �1/5�b1, and com-
pute the correlations of this Fourier amplitude between dif-
ferent rows. This is given by the correlation function C�k1

=1/5 ,m2�, defined in Eq. �26�. In Fig. 8�a� we plot C�k1

=1/5 ,m2� versus m2 for a 60�60 system. The correlation
has peaks at values m2=5n, n integer, and is essentially zero
in between, indicating that the particles flow in periodically
spaced channels, and that the channels have a width of a
single grid spacing. The exponential decay of the peak
heights indicates the short range correlation between par-
ticles in different smectic channels. In Fig. 8�b� we plot only
the peaks of C�k1=1/5 ,m2�, but for different system sizes
L�L. The curves for different L lie almost on top of each
other and decay to zero, indicating a finite, size independent,
correlation length �� transverse to the direction of the ap-

plied force F. To estimate �� we fit to a simple periodic
exponential

C�k1 = 1/5,m2� � A�e−m2/�� + e−�L−m2�/��� , �35�

and get values in the range ���7.0±0.5 as L varies from 60
to 100. Thus correlations extend only slightly beyond nearest
neighbor channels �which are separated by five grid spac-
ings�.

Next we compute the correlations within individual smec-
tic channels. In Fig. 9�a� we plot the real space correlation
parallel to the driving force C�m1 ,m2=0� versus m1, for a
system of size 60�60. Again we see sharply defined peaks
at m1=5n, n integer, corresponding to the periodic spacing of
particles within the channel. Moreover the height of these
peaks decays only slightly to a large finite value as m1
→L /2, as one would expect for long-range order. However,
when we plot in Fig. 9�b� the height of these peaks for dif-
ferent values of L for system sizes L�L, we now see behav-
ior inconsistent with long-range order. The value of C�m1 ,0�
at any given value of m1 decreases as L increases; the mag-
nitude of this decrease from unity is proportional to L. Rather
than indicating long-range order, such behavior is consistent
with a very dilute but finite density of order destroying de-
fects; when L is small compared to the average spacing be-
tween defects, then the probability to have a defect in the
system will be proportional to L, resulting in a decrease in
the correlation proportional to L.

Indeed, since the smectic channels are essentially decou-
pled from each other �as illustrated in Fig. 8�, each channel
can be thought of as an independent one-dimensional system.

FIG. 8. Transverse correlation function C�k1=1/5 ,m2� vs m2 at
F=0.1, T=0.004. �a� C�k1=1/5 ,m2� for all integer values m2 for
the single size L=60; the dashed line highlights the decaying enve-
lope of the peaks, while the solid line interpolates between the data
points. �b� Peak values of C�k1=1/5 ,m2� at values m2=5n, n inte-
ger, for different sizes L; solid lines are fits to the periodic expo-
nential of Eq. �35�.

FIG. 9. Longitudinal correlation function C�m1 ,m2=0� vs m1 at
F=0.1, T=0.004. �a� C�m1 ,0� for all integer values m1 for the
single size L=60. �b� Peak values of C�m1 ,0� at values m1=5n, n
integer, for different sizes L �solid symbols�; solid lines are fits to
the periodic exponential of Eq. �36�. Open symbols and dashed
lines are fits to a one-dimensional model �see text�.
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Although the charges in the channel have a bare long-range
logarithmic interaction, the uncorrelated motion of charges in
neighboring smectic channels will screen this log interaction,
converting it to an effective interaction that is finite ranged.
To test this picture we perform independent CTMC simula-
tions of a one-dimensional �1D� lattice gas of particles with
average spacing 5 and a nearest-neighbor harmonic interac-
tion with a spring constant �. Carrying out simulations for
the same system sizes L as in Fig. 9�b�, we adjust � to get the
best fit to the correlations found in the original two dimen-
sional system. This gives a reasonable value of �=0.0505,
and our 1D results are shown as the open symbols and
dashed lines in Fig. 9�b�. We see that the agreement is very
good; the small deviations that exist are presumably due to
the small but finite coupling between neighboring smectic
channels that exists in the original 2D model. Having found
�, we can now simulate the 1D model for much larger L, to
see the exponential decay of correlations in the model and to
determine the correlation length ��. We find for the 1D
model, �� �86. For comparison, we can fit the data from the
original 2D model to a periodic exponential

C�m1,m2 = 0� � c1 + c2�e−m1/�� + e−�L−m1�/��� , �36�

where c1=1/5 is the average density of charges in a smectic
channel, and c2=4/5 is chosen so that C�0,0�=1. The result-
ing fits are shown as the solid lines in Fig. 9�b�, and give the
values �� �83,80,78 for sizes L=60, 80,100, in good agree-
ment with the 1D model. We conclude that the smectic phase
at high drive consists of weakly coupled channels, character-
ized by a small transverse correlation length ��. Within each
channel particles have only finite-range correlations, but, for
the case considered above, this longitudinal correlation
length is comparable to the size of the system, �� �L���, so
that the particles in a given channel appear to be ordered.

We can next ask what happens if the system length paral-
lel to the driving force F increases to be larger than the
longitudinal correlation length L1���. Increasing the system
to size L1�L2=500�60, so that this condition is met, we
found in Ref. 8 that the smectic phase at F=0.1, T=0.004,
becomes unstable to the liquid; for this system with bigger
L1, the smectic remains stable only at lower T such that the
condition L1��� is again obeyed. To illustrate this point fur-
ther, we carry out simulations for a system of size 60�60 at
F=0.1, but increasing T so as to cross the melting line shown
in the phase diagram of Fig. 3�b�. In Fig. 10 we plot the
resulting correlation functions C�m1 ,m2=0� versus m1 for
several different temperatures. We see clearly the transition
from smectic to liquid at a temperature between 0.005 and
0.006. To get an estimate of the longitudinal correlation
length �� we fit the data of Fig. 10 to a periodic exponential,
as in Eq. �36�. For the smectic, T�0.005, we set c1=1/5 as
appropriate for the average density of charges in a smectic
channel. For the liquid, T�0.006, we set c1=1/25, appro-
priate for the average density of charges in the liquid. Since
the periodic exponential of Eq. �36�, with a single decay
length ��, only needs to describe behavior at large m1 �decay
at small m1 possibly being described by additional, shorter,
length scales�, we consider fits in which we drop the data at
some of the initial small values of m1, and keep c2 as a free

fitting parameter. For both the smectic and the liquid we find
the best fits to Eq. �36� when we exclude only the initial
point at m1=0, C�0,0�=1, from the fit. The resulting fits are
shown as the solid lines in Fig. 10. The values of �� obtained
from these fits are then plotted versus 1/T in Fig. 11�a�. The
dashed straight line on the plot indicates an Arrhenius form
�� �eT0/T for the divergence of �� in the smectic as T→0. We
see that melting occurs when �� �30, i.e., roughly half the
system length. We conclude that the smectic is only stable
when �� �L /2. When the correlation length becomes smaller
than this, and one would expect particles within the smectic
channels to disorder, the entire smectic structure becomes
unstable to a liquid. Since �� diverges rapidly as T→0, how-
ever, one should expect to see the smectic phase in any finite
size system, at sufficiently low temperature.

Finally, we can also estimate the transverse correlation
length ��. For the smectic we use an analysis of C�k1

=1/5 ,m2�, similar to that of Fig. 8�b�, to determine ��. For
the liquid, since there is no periodic ordering, we use an
analysis similar to that of Fig. 10 applied to the real space
correlation C�x=0,y�=C�m1=−m2 /2 ,m2� versus y
= �	3/2�m2. Note that since the direction â2 is not orthogonal
to â1 �see Fig. 1�a� it is necessary to use the argument m1
=−m2 /2 in order to measure a strictly transverse correlation.
Our results for �� versus T are shown in Fig. 11�b�. Unlike
the rapid rise in �� as T decreases, we see only a small in-

FIG. 10. Correlation function C�m1 ,m2=0� vs m1 at F=0.1 and
various T, for a 60�60 system. Only the peak values at m1=5n, n
integer, are shown. Solid lines are fits to an appropriate periodic
exponential, as in Eq. �36�, excluding the initial point at m1=0 from
the fit.

FIG. 11. �a� Longitudinal correlation length �� vs 1/T and �b�
transverse correlation length �� vs T, at F=0.1 for a 60�60
system.
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crease in �� as T→0. In the liquid, �� and �� are compa-
rable.

C. Smectic phase—Low drive

We now consider the structure of the smectic in the limit
of smaller driving forces, in particular the case F=0.02, T
=0.003, shown in Fig. 4�c�. In Fig. 12 we plot profiles of
S�k� along different paths in the first Brilloun zone, for dif-
ferent system sizes L�L. Comparing with the analogous
Fig. 7 for the high drive case, F=0.1, we see that the peaks
are now more sharply defined. The peaks along the k2 axis at
k1=0 in Fig. 12�b� continue to look like Bragg peaks, being

only one grid point wide and with heights scaling as L2, thus
indicating long-range ordering into smectic channels. How-
ever the peak heights at finite k1=1/5, 2/5 in Figs. 12�c� and
12�d� no longer appear to scale �L as do the corresponding
peaks in Fig. 7.

In Fig. 13�a� we plot the heights of various peaks S�K�
versus L for various system sizes L�L. While the smectic
peak S�K01� scales �L2 as expected, we find S�K11��L1.3,
more divergent than the �L behavior found at higher drive.
This suggests the possibility of longer range, perhaps alge-
braic, correlations between the different smectic channels.
For algebraically diverging peaks, however, we expect that
not only the peak height must scale, but the entire peak pro-
file should scale. The expected scaling relation is17

S�k1 = 1/5,k2� � L1.3f�k2L� , �37�

where f�x� is a scaling function. In Fig. 13�b� we test this
scaling prediction by plotting S�k1=1/5 ,k2� /L1.3 versus k2L
for different sizes L. We clearly do not find the scaling col-
lapse expected for algebraic correlations.

To explain the above behavior, we consider the transverse
correlation function C�k1=1/5 ,m2�, which we plot versus m2

for different system sizes L�L in Fig. 14�a�. The solid lines
are fits to the periodic exponential of Eq. �35�, and give the
values ���29.6, 30.8, 29.7 for sizes L=80, 100,140, respec-
tively. Our results thus consistently indicate short-range or-
der between the smectic channels, with a finite transverse
correlation length ���30. The absence of the expected �L
scaling in Figs. 12�c� and 12�d� is then a finite size effect due
to the correlation length �� being comparable to the system
length L.

We similarly estimate the longitudinal correlation length
by plotting C�m1 ,m2=0� versus m1, for different system
sizes L�L, in Fig. 14�b�. Fitting to the periodic exponential
of Eq. �36�, with c1=1/5 and c2=4/5, we find �� �4700. We
conclude that the smectic phase at small drive is qualitatively
the same as that at large drive, except for having larger, but
still finite, correlation lengths.

Finally we consider behavior as the driving force F varies.
In Fig. 15�a� we plot the transverse correlation function
C�k1=1/5 ,m2� versus m2, for T=0.003 in a 60�60 system,
for various values of F from the low drive case considered

FIG. 12. Profiles of S�k� in various directions, for different sys-
tem sizes L, for the smectic phase at F=0.02, T=0.003. �a� S�k� vs
k1 for fixed k2=1/5; �b� S�k� / fL2 vs k2 for fixed k1=0; �c�
S�k�a0 /L vs k2 for fixed k1=1/5; �d� S�k�a0 /L vs k2 for fixed k1

=2/5. Note the logarithmic scale in �a� and �b�.

FIG. 13. Smectic phase at low drive, F=0.02, T=0.003. �a�
Scaling of peak heights S�K� vs system size L. Straight lines indi-
cate good power-law fits S�K��Ls, with s�2.0 for K01, s�1.3 for
K11, and s�0.87 for K21. �b� Attempted scaling collapse of S�k1

=1/5 ,k2� /L1.3 vs k2L.
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above, F=0.02, to the high drive case considered previously,
F=0.1. Solid lines are fits to the periodic exponential of Eq.
�35�. In Fig. 15�b� we plot the corresponding longitudinal
correlation function C�m1 ,m2=0� versus m1. Solid lines are
fits to the periodic exponential of Eq. �36�, with c1=1/5 and
c2=4/5. From these fits we estimate the transverse and lon-
gitudinal correlation lengths, �� and ��, which are plotted in
Figs. 16�a� and 16�b�. We see that the transverse correlation
length �� grows as F decreases below 0.05. For F�0.05, ��

levels off to a constant, ���7. In fact, for F�0.05, the
transverse correlation C�k1=1/5 ,m2� shown in Fig. 15�a� is
completely independent of F. The longitudinal correlation
length �� grows exponentially as F decreases below 0.04, has
a shallow minimum at F=0.05 �presumably related to the
minimum in the melting line Tm�F� that occurs nearby and
then saturates to a constant above F=0.06. The longitudinal
correlation C�m1 ,m2=0� shown in Fig. 15�b� is independent
of F for F�0.06. These results strongly suggest that no new
behavior will be seen by increasing F to even larger values,
and we have verified this explicitly by simulating up to F
=2.0.

The above cross over point between low and high drives,
and its value Fcr�0.05, can be understood from Fig. 2�b�.
Consider the system in its F=0 ground state. The interaction
energy to move a given charge forward parallel to F is
�H1�0.0627; the rate to make this move is W
=W0e−��H1−F�/2T. Once this charge has moved forward, the
interaction energy to move the neighboring charge in the
same row forward is �H2�0.0270; the rate to make this
move is Wf =W0e−��H2−F�/2T. This needs to be compared
against the rate for the first charge to move back to its origi-

nal position Wb=W0e��H1−F�/2T. The ratio of these last two
rates is

Wf

Wb
= e�2F−�H1−�H2�/2T, �38�

and so the two rates are equal when Fcr= ��H1−�H2� /2
=0.045, which agrees with our observations in Figs. 15 and
16. When F�Fcr, the probability that the neighboring charge
moves forward along with the first charge is larger than the
probability that the first charge falls back into place. Once
the second charge moves forward, the remaining charges in
the row will follow suite. Therefore when F�Fcr, virtually
all moves are those which advance a charge in the direction
of the applied force F; charges in the smectic channels move
continuously forward row by row. For F�Fcr, charges which

FIG. 14. Smectic phase at low drive F=0.02, T=0.003, for vari-
ous system sizes L�L. �a� Transverse correlation function C�k1

=1/5 ,m2� vs m2 and �b� longitudinal correlation function
C�m1 ,m2=0� vs m1. Solid lines are fits to periodic exponentials as
in Eqs. �35� and �36� and determine the correlation lengths �� and
��.

FIG. 15. Smectic phase at T=0.003, for various driving forces F
in a 60�60 size system. �a� Transverse correlation function C�k1

=1/5 ,m2� vs m2 and �b� longitudinal correlation function
C�m1 ,m2=0� vs m1. Solid lines are fits to periodic exponentials as
in Eqs. �35� and �36� and determine the correlation lengths �� and
��.

FIG. 16. �a� Transverse correlation length �� and �b� longitudi-
nal correlation length �� vs F, at T=0.003 for a 60�60 system.
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advance forward parallel to F will more often than not fall
backwards to their original position on the next move. The
system spends finite time with no net motion, in between
randomly occurring avalanches that advance an entire row of
charges forward. The result is a stick-slip type of motion.

The above scenario is illustrated in Fig. 17 where we plot
the center of mass displacement parallel to F times the num-
ber of charges NcXc.m. versus the simulation clock time t. We
show results for T=0.0022, slightly lower than the tempera-
ture 0.003 considered above, for a system of size 60�60.
Figure 17�a�, for F=0.02�Fcr, shows the steplike advance-
ment forward of the system, characteristic of stick-slip mo-
tion. The inset shows an expanded scale for short time. The
height of each step is exactly 12 grid spacings, correspond-
ing to the advance of all 12 charges in a given smectic chan-
nel. Along the plateau of each step we see motion one grid
space forward, followed by one grid space backwards, with
no net motion. In Fig. 17�b� we show results for F=0.05
�Fcr. We see that motion is perfectly linear in time. The
inset shows that the system moves smoothly forward, with
one row advancing immediately after another.

D. Liquid phase

We now briefly consider the liquid phase. The liquid
phase shown in Fig. 4�b�, at F=0.02, T=0.008, appears fairly
structureless. However as T decreases, and the finite correla-
tion lengths grow, local structure develops. As discussed in
Sec. III B the melting line Tm�F� decreases as the size of the
system increases. Although, for L=60, Tm�F� always lies
above T=0.003 �see Fig. 3�b�, when L increases, the mini-
mum of Tm�F� near F�0.03 dips below 0.003. In Fig. 18 we
plot the structure function S�k� for a system of size 120
�120 at T=0.003 and driving force F=0.05. Although one
sees prominent peaks at the reciprocal lattice vectors corre-
sponding to the F=0 ground state, the system is in a liquid
state with short-range translational order. The heights of the
peaks are small compared to those in a more ordered �i.e.,
smectic or solid� state, and as L increases, the peak heights
stay finite rather than diverging with system size.

Next we consider how behavior in the liquid varies with
the driving force F. In Fig. 19�a� we plot the longitudinal and
transverse correlation lengths �� and �� versus F. We obtain

�� and �� by fitting to the correlation functions C�m1 ,m2

=0� and C�x=0,y� in the same way as we have done earlier
in constructing Fig. 11. We see that �� and �� increase with
increasing F, and that ���2��. That order extends further in
the transverse than the longitudinal direction can be seen by
noting that the transverse peaks in S�k�, shown in Fig. 18,
are larger than the peaks with a longitudinal component. The
same observation was made in our earlier work8 for a much
larger system at higher driving force.

We also investigate orientational order in the liqud. In Fig.
19�b� we plot the absolute value of the sixfold orientational
order parameter ���6�� versus F at T=0.003, for several dif-
ferent system sizes L�L. Depending on the value of L and
the corresponding value of Tm�F ;L�, the system is either in
the smectic state �with a high value of ���6��� or in the liquid
state �with a low value of ���6���. Even in the liquid ���6�� is
finite because of the sixfold rotational symmetry of the un-
derlying triangular grid. We see that, as F increases in the
liquid, ���6��, similar to �� and ��, increases. Thus both
translational and orientational order in the liquid increase as
the driving force F increases.

E. Dynamics

The preceding sections have dealt with the structural be-
havior of the driven system. In this section we consider some
of the dynamical behavior. In Fig. 20 we plot results for the
average velocity vave x parallel to the driving force F=Fx̂, for
a 60�60 size system. In Fig. 20�a� we show results for fixed
F=0.10�Fcr, in the high drive limit, versus 1/T. The dashed

FIG. 17. Center of mass displacement parallel to the driving
force for T=0.0022, L=60. NcXc.m. vs simulation clock time t for
�a� F=0.02 and �b� F=0.05. The insets show an expanded picture
on a short time scale.

FIG. 18. Structure function S�k� for a system of size 120
�120 in the liquid state at T=0.003 and F=0.05.

FIG. 19. �a� Correlation lengths �� and �� vs F for a system of
size 120�120 in the liquid state at T=0.003. �b� Orientational or-
der parameter ���6�� vs F for several systems of size L�L at T
=0.003. The larger valued data points are for the smectic phase; the
lower data points are for the liquid phase.
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line for 1 /Tm�1/T shows the exponential dependence on
1/T in the smectic phase vave x�eT0/T. Fitting to this form we
find T0�0.02. We can understand this value as follows. As
discussed in Sec. III C, at such high F virtually all moves in
CTMC result in the advance of a charge forward; the charges
in the smectic channels move steadily forward one channel at
a time. The average velocity is set by the rate for the charges
in a given channel to move forward, which in turn is set by
the rate for the first charge in the channel to move forward
�all other charges in that channel moving forward on a much
more rapid time scale�. The rate for the first charge in a
channel to move forward is �e−�Umin 1/2T, where −�Umin 1
=F−�H1, with �H1�0.06 from Fig. 2�b�. Thus we have
T0= �F−�H1� /2=0.02.

In Fig. 20�b� we show results for vave x vs F, for fixed T
=0.003�Tm, in the smectic phase. The dashed line shows
the exponential dependence on F in the high drive limit, F
�Fcr�0.045, vave x�eF/F0. From the preceding discussion,
we expect F0=2T=0.006, and we find this value gives an
excellent fit to the data.

We have also considered the dependence of the average
velocity on the system size. In Table I we list the values of
vave x for various system sizes, with different aspect ratios
L1 /L2, at F=0.10, T=0.004, in the high drive smectic. In
agreement the discussion at the end of Sec. II B 3 we see that
vave x scales roughly proportional to the length of the system
L1 parallel to the driving force.

Next we consider the diffusion of the center of mass about
its average motion. To compute D�t� we need to compute the
correlation between states of the system separated by time t.
Since we are interested in the long t limit, computing D�t�
accurately thus requires much longer simulations than were
needed to compute the structural �equal time� correlations.
We therefore present results only for several typical cases. In
Fig. 21 we plot Dyy�t� and Dxx�t�, defined by Eq. �33�, versus
the simulation clock time t, for the smectic in the low drive

limit of F=0.02, T=0.002, for a 60�60 size system. We see
that Dyy decays to zero, indicating that the system is trans-
versely pinned. Dxx saturates to a finite constant as t in-
creases, indicating a random walk motion about the average
center of mass position. In Fig. 22 we similarly plot Dyy and
Dxx for the smectic in the high drive limit of F=0.05, T
=0.0022. Again we see that Dyy→0 and the system is trans-
versely pinned, while Dxx saturates to a finite constant. In
Fig. 23 we plot Dyy and Dxx for the liquid at F=0.10, T
=0.006, just above the melting transition. In this case both
Dyy and Dxx approach finite constants as t increases; as ex-
pected, the liquid is not transversely pinned.

Since both Dxx and vave x approach constants in the long
time limit, a convenient measure of the strength of fluctua-
tions about the average motion is given by Dxx /vave x. For the
low drive smectic of Fig. 21 we find Dxx /vave x�40. This is
consistent with our interpretation of this region as being one
of stick-slip motion. In this case we expect that the motion of
rows of charges forward will constitute a Poisson process
with avalanches occurring at a rate �. At each avalanche
nr

	fL charges move forward, where 	fL is the number of
charges in a given smectic channel, and nr is the number of
correlated channels. The average center of mass displace-
ment in time t is then �Xc.m.= �nr

	fL /Nc��t= �nr / �	fL��t,
where we used Nc= fL2 is the total number of charges. Be-
cause it is a Poisson process, the variance of the number of
avalanches is equal to the average, and so the fluctuation

TABLE I. Average velocity vave x for various system sizes on a
triangular grid at F=0.10, T=0.004, in the high drive smectic.

L1 60 60 120 120 120 240

L2 30 60 30 60 120 60

vave x 2569 2550 4971 4930 4978 7135

FIG. 20. Average velocity vave x parallel to the driving force F
for a 60�60 system. �a� vave x vs 1/T for fixed F=0.1 in the high
drive limit. �b� vave x vs F for fixed T=0.003 in the smectic. The
dashed lines indicate the exponential dependence of vave x on F and
1/T.

FIG. 21. Center-of-mass diffusion constants �a� Dyy and �b� Dxx

vs time t for the smectic phase in the low drive limit F=0.02, T
=0.002 for a system of size 60�60. That Dyy→0 indicates the
system is transversely pinned.

FIG. 22. Center of mass diffusion constants �a� Dyy and �b� Dxx

vs time t for the smectic phase in the high drive limit F=0.05, T
=0.0022, for a system of size 60�60. That Dyy→0 indicates the
system is transversely pinned.
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about this average displacement is ��Xc.m.�2= �nr / �	fL�2�t.
This yields the ratio Dxx /vave x=Nc��Xc.m.�2 /2�Xc.m.

=nr
	fL /2. For f =1/25 and L=60 we get Dxx /vave x=6nr. At

low T and F the correlation length �� can get large �see Fig.
16�; if several channels are correlated, the ratio 40 can be
attained.

For the high drive case of Fig. 22, we find the ratio
Dxx /vave x�0.00025. In this limit where rows of channels
move steadily forward one after the other, longitudinal fluc-
tuations are greatly suppressed. Finally, for the liquid case of
Fig. 23, we find Dxx /vave x�25. In the liquid, the system is
structurally disordered and the motion of the charges is
largely uncorrelated. Fluctuations about the center-of-mass
motion are correspondingly enhanced.

IV. RESULTS ON A SQUARE GRID

We now consider the behavior of the driven Coulomb gas
on a periodic square grid of sites. We consider only CTMC
dynamics for the same charge density of f =1/25 that was
considered above for the triangular grid. We first consider
behavior in the limit T→0. In Fig. 24�a� we show the equi-
librium ground-state configuration for F=0. The charges oc-
cupy the sites of a 5�5 square sublattice of the grid. The
basis vectors of this sublattice, c1=3x̂−4ŷ and c2=4x̂+3ŷ,
are clearly not aligned with the grid basis vectors â1= x̂ and
â2= ŷ, nor with the driving force F=Fx̂ that we apply. This
will produce some interesting effects.

When F�Fc�0.06 the charges will start to move for-
ward parallel to F, according to the order in which they most
lower the system energy. In Fig. 24�a� we number the
charges in the order in which they move in a particular
CTMC pass, and in Fig. 24�b� we give the change in inter-
action energy �H associated with each move, as was done
for the triangular grid in Fig. 2. Charges move forward in the
x̂ direction in an order dictated by their position along the
c=c1+c2 direction, as indicated by the arrow drawn in Fig.
24�a�. If one follows a path along the direction of c, using
periodic boundary conditions, one finds that the path closes
upon itself only after one has passed through all the charges
in the ground state. Thus there is no row by row motion as
there was for the case of the triangular grid, and hence no
oscillation in �H as a function of simulation step.

A. High drive

We now consider behavior at finite temperature and high
drive. We simulate a 50�50 size system, starting from the
F=0 ground state, at the values T=0.004, F=0.10. In Fig.
25�a� we show an intensity plot of the structure function S�k�
at the initial stage of the simulation; our results are averaged
over 1250 CTMC passes after an initial 2500 passes were
discarded for equilibration. We see peaks at wave vectors K
corresponding to the ordered F=0 ground state. The peaks
remain sharp in the k1 direction, but are somewhat smeared
out in the transverse k2 direction, suggesting a moving lattice
with anisotropic translational correlations. If we simulate
longer, however, this moving ground-state lattice undergoes
a change of structure. In Fig. 25�b� we show S�k� averaged
over 5�106 passes, after discarding an initial 5�106 passes.
We see clearly a sixfold orientational order in the position of
the peaks, which are aligned with one of the diagonals of the
square grid. Figure 25�b� is reminiscent of the floating trian-
gular lattice �algebraic translational order� that is seen in
equilibrium simulation6 of more dilute systems on a square
grid, however without a finite size scaling analysis we cannot
be certain of the nature of translational order in the system.
Finally, however, if we simulate even longer, the structure
changes yet again to a smectic phase with channels oriented
parallel to F. In Fig. 25�c� we show S�k� averaged over
2.5�107 passes, after discarding an initial 3.75�107 passes.
We see clearly the same smectic structure that we saw for the
triangular grid in Fig. 4�d�. The extremely long �compared to

FIG. 23. Center of mass diffusion constants �a� Dyy and �b� Dxx

vs time t for the liquid phase at F=0.10, T=0.006, for a system of
size 60�60.

FIG. 24. CTMC on a square grid with charge density f =1/25 at
T→0 and F�Fc, with F parallel to the â1 axis. �a� Ground-state
charge lattice for a 25�25 square grid. The numbers denote the
locations of the charges in the ground state. The value of each
number indicates the step on which that charge moves forward. �b�
The change in interaction energy �H at each step as charges move
forward. • is for a 25�25 grid and correspond to the moves in �a�;
� and � are the beginnings of similar sequences for 50�50 and
100�100 grids.
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the triangular grid� time it takes for the system to order into
the smectic results because the initial ground-state configu-
ration is ordered with a set of reciprocal lattice vectors �K�
that is not commensurate with that of the final state smectic.
The system first requires a long time to disorder the initial
state, and then another long time to reorder into the smectic.

We have checked the above results by carrying out simu-
lations in which we start from an initial random configura-
tion of charges. After roughly 3.5�107 passes, we find that
the system orders into the same smectic state as in Fig. 25�c�.
In Fig. 25�d�, we show an intensity plot of the real space
correlations in the smectic C�m1 ,m2� obtained from the Fou-
rier transform of the S�k� of Fig. 25�c�. We see that charges
in the same channel �m2=0� have a sharp periodic ordering.
Correlations between channels show that the charges in
neighboring channels are staggered; the peak in charge den-
sity in one channel aligns with the minimum in charge den-
sity of the neighboring channel, so as to form a local order-
ing that is more triangular than square. As one moves to
channels further away, the correlations decrease and the
peaks in C�m1 ,m2� get smeared out.

We now check that the smectic phase of Fig. 25�c� has the
same scaling behavior with system size that was found for
the triangular grid. For larger systems with L=100−200, it is
not possible to simulate for the very long times ��107

passes� that are needed to order into the smectic from either
the ground state or a random initial state. We therefore start
with an initial configuration that is a periodic repetition of
the smectic state for L=50, and simulate for only relatively
short times. For L=100, 150, and 200, we use 10 000, 2000,
and 2000 passes. Our results are shown in Fig. 26, where we
plot the profiles of S�k� along different paths through the first
Brillouin zone. Figure 26�a� shows that the peaks are as
sharply confined to the values k1=1/5, 2/5 as was found for

the triangular grid. Figure 26�b� shows that the peaks at k1
=0 scale �L2, indicating long-range smectic order. Figures
26�c� and 26�d�, show that S�k1 ,k2� for fixed k1=1/5, 2/5
scales rougly �L. Note that the scaling collapse in Fig. 26�c�
is not quite as nice as the corresponding Fig. 7�c� for the
triangular grid. Plotting the peak value S�K11� versus L, simi-
lar to what was done in Fig. 6, gives S�K11��Ls with s
�1.17. We believe that this value s�1, rather than being a
signature of stronger correlations between smectic channels,
may just reflect the persistence of correlations introduced by
our initial periodic configuration, which have not yet com-
pletely washed out over our relatively short runs.

FIG. 25. �a�–�c� Intensity plot of structure function S�k� for a
50�50 size system at T=0.004, F=0.1â1, starting from the ground
state of Fig. 24�a�. �a� S�k� averaged over 3750 passes, after an
initial 2500 passes of equilibration; �b� S�k� averaged over 5
�106 passes, after discarding an initial 5�106 passes; �c� S�k�
averaged over 2.5�107 passes, after discarding an initial 3.75
�107 passes. �d� Intensity plot of real space correlations C�m1 ,m2�
corresponding to the smectic S�k� of �c�.

FIG. 26. Profiles of S�k� in various directions, for different sys-
tem sizes L, for the smectic phase at F=0.10, T=0.004 on a square
grid. �a� S�k� vs k1 for fixed k2=1/5; �b� S�k� / fL2 vs k2 for fixed
k1=0; �c� S�k�a0 /L vs k2 for fixed k1=1/5; �d� S�k�a0 /L vs k2 for
fixed k1=2/5. Note the logarithmic scale in �a� and �b�.
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In Fig. 27 we plot the transverse and longitudinal corre-
lation functions, obtained from the appropriate Fourier trans-
form of S�k�. C�k1=1/5 ,m2� in Fig. 27�a� shows exponen-
tially decaying transverse correlations, with a correlation
length ���5–7, comparable to that found for the triangular
grid at the same parameter values. We believe that the slight
increase from ���5 to 7 as L increases from 50 to 200
reflects the correlations introduced by our initial configura-
tion, as already commented on in connection with Fig. 26�c�.
Note that the peak values of C�k1=1/5 ,m2� oscillate in sign
for successive values of m2=5n, n integer, due to the � phase
shift from channel to channel that is apparent in the real
space correlations shown in Fig. 25�d�; hence we have plot-
ted �C�k1=1/5 ,m2�� in Fig. 26�a�. In Fig. 27�b� we plot the
longitudinal correlation C�m1 ,m2=0�. The solid lines are fits
to a periodic exponential, and give a common value of ��

�174 for all sizes L. Thus we have a finite correlation
length, but �� �L. We conclude that the driven steady state
for low T and large F on the square grid is a smectic that is
qualitatively the same as what was found for the triangular
grid.

B. Low drive

We now consider behavior at low drive, simulating at T
=0.004, F=0.04 for an L�L system of size L=75. We will
find that these parameters place the system right at the melt-
ing transition. We start from an initial random configuration
and run 2.5�104 passes to equilibrate, followed by 2.5
�107 passes to compute averages. In Fig. 28 we plot the

instantaneous absolute value of the sixfold orientational or-
der parameter ��6� versus the simulation clock time t. We see
that the system makes sharp jumps between states of lower
and higher values of ��6� and conclude that these are the
coexisting liquid and ordered phases at the first order melting
transition. In Fig. 29�a� we show an intensity plot of the
structure function S�k� averaged over only the liquid states
labeled ‘‘L’’ in Fig. 28. We see a liquidlike S�k�, but with a
striking sixfold modulation of intensity in the diffuse peaks,
corresponding to the relatively large values of ��6��0.4 seen
in Fig. 28. In Fig. 29�b� we show S�k� averaged over the
ordered states labeled “S2” in Fig. 28. We see periodic sharp

FIG. 27. Transverse and longitudinal correlation functions at
F=0.1, T=0.004, for system sizes L�L on a square grid. �a�
�C�k1=1/5 ,m2�� at values m2=5n, n integer, for different sizes L;
solid lines are fits to the periodic exponential of Eq. �35�. �b�
C�m1 ,m2=0� at values m1=5n, n integer, for different sizes L; solid
lines are fits to the periodic exponential of Eq. �36�.

FIG. 28. Sixfold orientational order parameter ��6� vs simula-
tion clock time t for T=0.004, F=0.04 and L�L system of size
L=75. Regions denoted “L” are in a moving liquid state; regions
denoted “S1” and “S2” are in a moving solid state. Coexistence of
the two states indicates that the system is at the melting transition.

FIG. 29. Intensity plots of S�k� at T=0.004, F=0.04, for an L
�L system of size L=75 averaged over �a� the liquid states labeled
“L” and �b� the solid states labeled “S2” of Fig. 28. Instensity plots
of the corresponding real space correlations C�r� for �c� the liquid
states “L” and �d� the solid states “S2.” The applied force F is in the
horizontal direction.
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peaks suggesting a moving solid state. S�k� for the states
labeled “S1” in Fig. 28 is identical to that of Fig. 29�b�,
except reflected about the k2 axis. In Figs. 29�c� and 29�d�
we show intensity plots of the corresponding real space cor-
relations C�r�.

We consider first the liquid state. In Fig. 30�a� we plot
S�k1 ,k2=0� versus k1 for several different L�L system sizes.
Except for the maximum of the first peak, we see essentially
no finite size effect. The height of the first peak is different
for the different L, however, there is no systematic variation
with L; we believe that these differences are just statistical
fluctuations. We conclude that this state is a liquid with only
short range translational order. Figures 28 and 29�a�, how-
ever, suggest that the liquid may possess finite orientational
order. In Fig. 30�b� we therefore plot ���6�� versus L for the
liquid state. We see that ���6�� is roughly independent of L,
confirming that the liquid has long-range hexatic orienta-
tional order.

The long-ranged hexatic liquid that we find in Fig. 29�a�
is reminiscent of the long-ranged hexatic liquid found for the
triangular grid at low temperatures, as shown in Fig. 18.
There are, however, some important differences. A liquid in a
continuum will always have local six-fold orientational or-
der. However, due to the short-ranged translational correla-
tions, the phase of the local complex orientational order pa-
rameter will vary with position. For a normal liquid, this
causes correlations of the six-fold orientational order param-
eter to decay exponentially with distance. According to the
theory of melting in two dimensions by Halperin and Nelson,
and by Young,18 there may also be an algebraically ordered
hexatic liquid between the solid and normal liquid phases, in
which correlations of the six-fold orientational order param-
eter decay algebraically. When the system sits on an external
periodic potential, however, the local six-fold orientational
order parameter can lock onto the symmetry directions of the
external potential, which therefore serves as an ordering field
for orientational order. For a triangular grid, the local six-
fold order of the particles locks onto the six-fold rotational
symmetry of the grid, as illustrated in Fig. 31�a�. The result
is long-range six-fold orientational order, with a finite ��6�.
For a square grid, the local six-fold order of the particles may
lock onto either the vertical or the horizontal directions of

the grid, as illustrated in Figs. 31�b� and 31�c�. For a liquid in
equilibrium, both of these orientations will occur in equal
numbers on average. Since the two orientations are related
by a � /2 rotation, the relative phase of the six-fold orienta-
tional order parameter for the two cases is exp�i6� /2�=−1,
and adding them in equal numbers causes ��6� to vanish. A
square grid induces no six-fold orientational order in equilib-
rium. For a liquid in a driven nonequilibrium steady state,
however, the direction of the driving force F breaks the sym-
metry between the vertical and horizontal directions, and can
cause one to be favored over the other. A driving force there-
fore can lead to a finite ��6� and long-range six-fold orien-
tational order on the square grid. From the plot of the real
space correlation C�r� shown in Fig. 29�c�, we see that the
system locks onto the vertical direction, as in Fig. 31�c�. The
resulting structure function S�k�, shown in Fig. 29�a� has a
set of six peaks about the origin, which are oriented so that
one pair of the peaks align with the direction parallel to the
applied driving force F. This is in contrast to case for the
triangular grid, shown in Fig. 18, where the peaks are ori-
ented so that one pair of the peaks align with the direction
transverse to the applied force.

We now consider the ordered moving state, labeled “S2”
in Fig. 28. The structure function S�k�, and the real space
correlations C�r� are shown in Figs. 29�b� and 29�d�, respec-
tively. Note that the periodic peaks in S�k� for this ordered
state do not have the same symmetry as that of the equilib-
rium ground state. The latter �see Fig. 25�a� consists of a
square array of Bragg peaks, while in Fig. 29�b� the peaks
are distorted into a more triangular structure. From either the
location of the peaks in S�k�, or more easily from a direct
inspection of the real space correlation C�r�, we see that this
state consists of periodic channels of charges oriented paral-
lel to the applied force F in the â1= x̂ direction. Within each
channel the charges are ordered with an average separation
of 8 1/3 grid spacing, while the channels themselves are
separated from each other by three grid spacings. The nearest
neighbors to a given charge are located in its two nearest
neighboring channels, rather than within the same channel,
reflecting a similar orientation of hexatic order as in the liq-
uid. This can be compared with the smectic state at high
drive, shown in Fig. 25�d�. This smectic has channels in
which charges are separated by five spaces, while the chan-
nels themselves are separated by five spaces; the nearest

FIG. 30. The liquid state at T=0.004, F=0.04 for different L
�L system sizes. �a� S�k1 ,k2=0� vs k1; �b� six-fold orientational
order parameter ���6�� vs L; bars denote the standard deviation of
the distribution of ��6�.

FIG. 31. Schematic showing how particle clusters with local
six-fold orientational order �shaded circles connected by thin lines�
may align with the rotational symmetry of an external potential or
grid �thick lines�. �a� lock in of the cluster to a six-fold rotationally
invariant triangular grid; �b� lock in of the cluster to the horizontal
axis of a four-fold rotationally invariant square grid; and �c� lock in
to the vertical axis of a square grid.
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neighbors to a given charge are located within the same
channel. In contrast, the equilibrium ground state of Fig.
24�a� can be thought of as channels in which charges are
separated by 25 spaces, while the channels themselves are
separated by 1 space; nearest-neighbor charges lie in the
next-next-nearest neighboring channels. The structure in
terms of channels, as described above, is determined by the
strength of the correlations between the channels. When
channels are more strongly correlated, it can be energetically
favorable to have the channels spaced more closely together,
with a correspondingly larger distance between charges
within a given channel; the stronger correlations between the
channels will keep charges within neighboring channels from
approaching each other too closely. The equilibrum ground
state represents the extreme limit of long-range correlations
between channels. The high drive smectic represents the op-
posite limit where correlations between channels are very
short ranged and it becomes favorable to keep the spacing
between channels at the same distance as the spacing of
charges within a channel. The moving state of Fig. 29�d� can
thus be thought of as having a structure, and presumably
channel correlations, intermediate between these two limits.

The strong correlations between channels, as discussed
above, are clearly evident in the plots of S�k� and C�r� in
Figs. 29�b� and 29�d�. All peaks in S�k� appear sharp in both
the longitudinal and transverse directions; real space correla-
tions C�r� appear to extend the entire length of the system in
both longitudinal and transverse directions. This suggests a
moving solid rather than a smectic. To investigate this further
we consider in more detail the peaks in the structure function
S�k�. In Fig. 32�a� we plot profiles of S�k1 ,k2� versus k2,
showing the peaks at k1=0 and k1=3/25. For k1=0 the peaks
appear as sharp �-function peaks upon a smooth background,
similar to what was seen in Fig. 26�b� for the smectic at large
drive, indicating the periodicity of the channels in the direc-
tion transverse to the driving force F. At finite k1=3/25 the
peaks are much sharper than the corresponding finite k1
peaks for the smectic at large drive in Fig. 26�c�; in the
present case the peaks drop by three orders of magnitude
from maximum to minimum �note the logarithmic scale� and
have a half width of about �k�0.007. Such sharp peaks

suggest the possible presence of long ranged or algebraic
correlations between the channels.

In Fig. 32�b� we plot only the heights of the dominant
peaks in S�k1 ,k2� versus k2, for the different values of k1. We
see that at fixed k1, there is only a very small variation of the
peak heights with k2; however, the dependence on k1 is con-
siderable. Fitting the points for each value of k1 to a simple
Gaussian �the solid lines in Fig. 32�b� we plot the resulting
Sfit�k1 ,k2=0� versus k1 in Fig. 33�a�, where another simple
Gaussian Sfit�k1 ,0�=Ncexp�−�k1

2� gives an excellent fit �the
solid line in Fig. 33�a�. Such a Gaussian shape for the peak
heights is consistent with a Debye-Waller-like behavior for
thermal fluctuations of a solid.

However, to investigate more precisely the nature of
translational correlations, we need to investigate the depen-
dence of the peak heights on system size L. We have not,
however, been able to do this at T=0.004; when, for larger
system sizes L, we start the system off in an initial disor-
dered state, we were unable to see a similar transition to an
ordered state as was found in Fig. 28 for L=75. We assume
that this is either because the melting temperature becomes
somewhat lower for larger L �as was seen for the triangular
grid�, or perhaps because the free energy barrier between the
liquid and ordered states increases with L and we have not
run sufficiently long to have a thermal excitation over this
barrier.

We choose, therefore, to investigate the finite size behav-
ior at the lower temperature T=0.003, taking as an initial
state an appropriate cut out of, or periodic extension of, the
ordered state we found for T=0.004. For sizes L=50 and L
=100, when we started the system in such an initial state, we
found that the system quickly melted to a liquid. We believe
that this is because these values of L are not commensurate
with the spacing of three grid spaces between channels re-
quired by this ordered structure. Ordered systems of size L
=75, 150, and 225, however, remained stable. Proceeding
similarly to Fig. 32�b�, we examine the peak heights of
S�k1 ,k2� versus k2 for the various k1. At this lower tempera-
ture T=0.003, the variation with k2 is even smaller than that
seen in Fig. 32�b� at T=0.004. Fitting to a Gaussian, we
determine the values of Sfit�k1 ,k2=0� and fit these to a

FIG. 32. Moving ordered phase of Fig. 29�b�, for T=0.004, F
=0.04, and L=75. �a� Profiles of S�k1 ,k2� vs k2 showing the peaks
at k1=0 and k1=3/25; note the logarithmic scale. �b� Heights of the
dominant peaks in S�k1 ,k2� vs k2; the different curves represent
different values of k1 and the solid lines are fits to a Gaussian.

FIG. 33. �a� Moving ordered phase of Fig. 29�b�, for T=0.004,
F=0.04, and L=75. Values Sfit�k1 ,k2=0� of fits from Fig. 32�b� vs
k1. Solid line is a fit of the data to a Gaussian. �b� Moving ordered
phase for T=0.003, F=0.04, and sizes L=75, 150, and 225. Values
of Sfit�k1 ,k2=0� vs Lk1

2. Solid line is a fit of the small k1 data to a
straight line.
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Gaussian, Sfit�k1 ,0�=Ncexp�−��L�k1
2, where Nc= fL2. We

find the surprising result that ��L��L. To show this, we plot
in Fig. 33�b� Sfit�k1 ,0� /Nc, on a log scale, versus Lk1

2. We see
that the data at small k1 give an excellent collapse to a
straight line. This exponential decrease in S�K� /Nc with in-
creasing L suggests that the observed moving solid may not
persist as a stable state in the large L limit.

We can also examine the translational order from the per-
spective of the real space correlations. In Fig. 34�a� we plot
the longitudinal correlations C�m1 ,m2=0� versus m1, for sys-
tem sizes L=75, 150, and 225. We clearly see that there are
three charges for every 25 grid spacings. No finite size effect
is seen. In Fig. 34�b� we plot the absolute value of the com-
plex correlation C�k1=3/25,m2� versus m2, showing values
for only every third grid spacing, m2=3n, n integer. Here we
find a pronounced finite size effect, with the correlation de-
caying to lower values as L increases. However a periodic
exponential �as used for example in Fig. 27�a� does not give
a particularly good fit, and we do not have enough sizes L to
try any systematic scaling fit. While the results of Figs. 33�b�
and 34�b� thus suggest that long-range solid order may not
persist as L increases, larger sizes will be needed to clarify
the true large L behavior.

The structure that we have found in Figs. 29�b� and 29�d�
for the ordered moving state at low drive has neither the
commensurability with respect to the underlying grid of the
equilibrium ground state, nor the large drive smectic. One
can speculate that at other values of F and T, in this low-
temperature ordered region, yet other commensurabilities
may be found. Exploring the complete phase diagram of the
driven lattice Coulomb gas on the square grid may therefore
prove to be considerably more challenging than was for the
case of the triangular grid, and we leave this for future in-
vestigations.

C. Dynamics

We now consider some of the dynamic properties for the
driven Coulomb gas on the square grid. We will not attempt
a detailed calculation of diffusion constants, as we did for the
triangular grid, however, we will still be able to make some
interesting observations by looking at average velocity and
center-of-mass motion. We first consider the case of the high

drive smectic F=0.10, T=0.004, considered in Sec. IV A. In
Table II we give the values for the average center of mass
velocity parallel to the driving force vave x for various system
sizes L�L. Similar to our results for the triangular grid �see
Table I� we find vave x�L scales proportional to the length of
the system in the direction of the applied force, in agreement
with the discussion at the end of Sec. II B 3. Inspection of
the center-of-mass motion as a function of time clearly
shows no transverse diffusion, indicating that the smectic is
transversely pinned, just as we found for the triangular grid.

Next we consider the case of low drive, F=0.04, consid-
ered in Sec. IV B. We consider first the case at melting, T
=0.004 and L=75, where the system is making transitions
between the liquid and a more ordered state, as shown in Fig.
28. In Fig. 35�a� we plot the component of the instantaneous
center of mass displacement parallel to the driving force
Xc.m. versus the simulation clock time t. Light lines denote
times in which the system is in the liquid state, while heavy
lines denote times when the system in the ordered state
�compare with Fig. 28�. That the lines in each region of time
are perfectly straight indicates a constant average velocity
vave x in each region. Note, however, that the velocity in the
ordered state is slightly larger than that in the liquid state: in
the liquid, vave x=10.05, while in the ordered state, vave x

=11.50, or 14% larger. In Fig. 35�b� we plot the transverse
component of the center-of-mass displacement Yc.m. versus
the simulation clock time t. In the liquid, Yc shows the noisy
fluctuations characteristic of diffusion; the observed bias to-
wards increasing values of Yc.m. we believe is just a statisti-
cal fluctuation. In the ordered phase, however, Yc.m. stays
essentially constant indicating that the system is transversely
pinned.

TABLE II. Average velocity vave x in the high drive smectic state
for various system sizes L�L at F=0.10, T=0.004, on the square
grid.

L 100 150 200

vave x 1082 1617 2065

FIG. 34. Real space correlationf for the moving ordered phase at
T=0.003, F=0.04, and L=75, 150, 225. �a� Longitudinal correla-
tion C�m1 ,m2=0� vs m1. �b� Transverse correlation �C�k1

=3/25,m2�� vs m2, for m2=3n, n integer.

FIG. 35. Center of mass displacement for F=0.04, T=0.004,
and system size L=75, at the melting transition: �a� motion parallel
to F, Xc.m. vs time t; �b� motion transverse to F, Yc.m. vs t. Light
lines correspond to times when the system is in the liquid state.
Heavy lines correspond to times when the system is the ordered
state �see Fig. 28�.
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We now consider the ordered phase at the lower tempera-
ture T=0.003. In Table III we give the values of vave x for
systems of different sizes L�L. We consider only the values
L=75, 150, and 225 that result in an ordered moving state. In
contrast to the high drive smectic �see Table II� we now find
that vave x is independent of L. This at first seems paradoxi-
cal, since the ordered state at low drive is more strongly
correlated than the smectic at high drive. However it may be
that the incommeasurability of the ordered state in the paral-
lel direction �where the average spacing between charges is
8 1/3 grid spacings� is sufficient to remove the energy bar-
riers responsible for the avalanche effects �see Sec. II B 3�
that give rise to the vave x�L1 dependence in the high drive
smectic. Finally, an examination of the transverse displace-
ment, similar to that of Fig. 35�b�, shows that the ordered
state is transversely pinned.

V. DISCUSSION AND CONCLUSIONS

In this work we have applied lattice gas dynamics to
model the nonequilibrium steady states of a driven diffusive
system, the 2D classical lattice Coulomb gas in a uniform
applied force. We have considered two different dynamic
algorithms, and have found that they result in qualitatively
different phase diagrams, contrary to naive expectations. We
have shown that the commonly used driven diffusive Me-
tropolis Monte Carlo �DDMMC� algorithm results in a struc-
turally disordered moving steady state over most of the phase
diagram. We have argued that this is due to unphysical in-
trinsic randomness in the algorithm that remains even as T
→0.

We have then applied the continuous time Monte Carlo
�CTMC� algorithm to the driven diffusive problem and found
it to produce smectic and, for the square grid, possibly more
strongly correlated steady states at low temperatures. We
have shown �Appendix � that CTMC is a natural discretiza-
tion of continuum Langevin dynamics. We have argued �Sec.
II B 2� that in general it gives a physically correct dynamics
when the grid sites are regarded as the minima of an external
one-body potential U�r�, and the energy barriers U0 of this
potential remain larger than the energy change �E in hop-
ping between neighboring minima, so that motion is by ther-
mal activation of one particle at a time over the potential
barriers. It remains unclear whether or not CTMC will be
qualitatively correct in the very large drive limit �E�U0
when the applied force overcomes the pinning force of the
potential, and the minima of the corresponding washboard
potential U�r�−F ·r vanish. In such a case, for a spatially
uniform system in an initially ordered state, each charge will
experience an equal net force forward from the washboard
potential, and one would expect at low temperatures that the
charges would move coherently together. The CTMC algo-

rithm, which only moves a single charge at a time, breaks
this spatial uniformity and might introduce unphysical ef-
fects. For the case of a system with quenched randomness,
however, the random pinning already breaks spatially unifor-
mity, and the forces on the charges will in general be differ-
ent. In such a case, the single particle moves of the CTMC
algorithm may not be as unphysical. This very large drive
limit for the case of random pinning has been the subject of
numerous recent theoretical15,19,20,21 and numerical17,21–27

works.
For CTMC we have shown �Sec. III B� that diverging

correlation lengths as T→0 can give rise to subtle finite size
effects that can be difficult to detect with the usual finite size
scaling methods applied to the peaks of the structure function
S�K� and we have argued that the smectic state that we find
for finite size systems will become unstable to a liquid on
sufficiently large length scales. However, since the relevant
correlation lengths diverge as T→0, the smectic will be the
stable steady state in any finite system, at sufficiently low
temperature. We have also shown that, on a square grid,
long-range hexatic orientational order develops in the mov-
ing steady state liquid, and that this is a purely nonequilib-
rium effect.

The one component 2D lattice Coulomb gas serves as a
model for logarithmically interacting point vortices in a 2D
superconducting network, or a superconducting film with a
periodic potential. Driven vortices in a 2D periodic potential
at finite temperature have been simulated by several others
using continuum dynamics. The molecular dynamic simula-
tions of Reichhardt and Zimányi28 and of Carneiro29 used
square periodic pins embedded in a flat continuum, with a
number of vortices equal to, or greater than, the number of
pins. We do not expect that such models, in which a sizable
fraction of the vortices spend most of their time in the flat
space between the pins, will be well described by our dilute
density of charges on a discrete grid, where all charges spend
most of their time at the potential minima.

Much closer to our model is that of Marconi and
Domínguez30,31 who simulate the dynamics of a square array
of Josephson junctions using resistively shunted-junction
�RSJ� dynamics applied to a 2D XY model. They study a
vortex density per unit cell of the array of f =1/25, the same
density as used in our present work. The phase diagram
which they report has some qualitative similarity to our own
phase diagram of Fig. 3�b�, with an ordered, transversely
pinned, moving state at low temperatures.32 However, in
contrast to either the smectic we find at high drives �see Fig.
25�c� or the more ordered state we find at low drives �see
Fig. 29�b�, they find a moving vortex lattice where S�k� has
peaks at the same reciprocal lattice vectors K as the equilib-
rium ground state. From a finite size scaling analysis of S�K�
using L=50, 100, and 150, they conclude that their state is a
vortex lattice with anisotropic algebraically decaying trans-
lational correlations.

To understand possible reasons for the difference between
their results and ours, we first consider the relevant param-
eters of their model. For their cosine Josephson junction
model, the effective one-body potential33 that the array struc-
ture introduces for vortex motion has an energy barrier U0
�0.12, in units where the Josephson coupling energy is J0

TABLE III. Average velocity vave x in the ordered phase at vari-
ous system sizes L�L for F=0.04, T=0.003, on the square grid.

L 75 150 225

vave x 36.3 36.3 36.1

CONTINUOUS-TIME MONTE CARLO AND SPATIAL… PHYSICAL REVIEW B 72, 064505 �2005�

064505-23



=1. Many of Marconi and Domínguez’s results are in the
limit where the force F �i.e., the applied current in the Jo-
sephson array model� satisfies F�U0. This is the case where
the minima in the washboard potential parallel to the driving
force have vanished, and where we have argued that our
lattice gas dynamics might not apply. However, even for the
case F�U0, the two models may be in different parameter
regimes. Our lattice gas dynamics implicitly assumes that the
energy barrier U0 is larger than all other energy scales. For
the Josephson array of Marconi and Domínguez, however, a
direct calculation using the XY model shows that the energy
to move a single vortex forward one grid space from its
ground-state position is �E1�0.34, substantially bigger than
the barrier U0�0.12. Our simulations are therefore in the
limit of a much stronger pinning potential.

In spite of these parameter differences, we can still make
some observations. First we note that Marconi and
Domínguez always begin their simulations from the equilib-
rium ground state �or states evolved from it�; they are unable
to cool the system from a liquid and find the ordered state,
hence there is no independent check that the state they find is
the true stable steady state. Next, we note that because their
simulations use a continuum dynamics, they are unable to
simulate for the very long times that are possible using our
lattice gas dynamics. As a measure of the effective simula-
tion time, we can compute the total displacement �Rc.m. of
the vortex center of mass parallel to the applied force over
the total time of the simulation. For the Josephson array, if V
is the average measured voltage drop per junction parallel to
the applied current, I0 the critical current of a single junction,
RN the normal shunt resistence, f the vortex density, and 
J
�� / �2eRNI0� the time constant, then �Rc.m.= �V / I0RN�
���t /
J��Nt /2�f�, where �t is the time integration step of
the simulation, and Nt is the number of such steps. Using
Marconi and Domínguez’s values31 of �t /
J=0.1, f =1/25,
Nt=105, and typical values31 of V / I0RN from their Fig. 5, we
find for their simulations that �Rc.m.�1.2�103 grid spac-
ings or less. In contrast, our simulations which lead to Fig.
25�c� have a total simulation time corresponding to �Rc.m.
�6�107 grid spacings, more than four orders of magnitude
larger. To make a better comparison with Marconi and
Domínguez, we note that our results of Fig. 25�a�, starting
from the equilibrium ground state, correspond to a total cen-
ter of mass displacement of only �Rc.m.�4�103 grid spac-
ings, similar to that of Marconi and Domínguez. The state we
find in Fig. 25�a� has peaks in S�k� at the same K as the
equilibrium ground state, moreover the anisotropies of this
state are the same as for the state found by Marconi and
Domínguez; the peaks develop a finite width in the direction
transverse to the direction of motion �this feature is visible in
Fig. 25�a�, and the heights of the peaks decrease as k varies
in the direction of motion. In our case the variation in peak
heights is only a 20% reduction from largest to smallest,
whereas for Marconi and Domínguez it is a larger 75%, nev-
ertheless the behavior is qualitatively similar. It thus may be
that the simulations of Marconi and Domínguez have not run
long enough to observe the true long time steady state of the
system.

Finally, we comment on one additional issue that is re-
lated to our ability, using lattice gas dynamics, to simulate to

much longer times that can be achieved with continuum
methods. It is interesting to note in Fig. 23 that the longitu-
dinal diffusion constant Dxx in the liquid approaches its long
time limit on a much longer time scale than does the trans-
verse diffusion constant Dyy. In recent continuum Langevin
simulations34 of driven vortices in a disordered 2D supercon-
ductor, similar diffusion in the vortex liquid phase was com-
puted. Although it was observed that the transverse diffusion
constant saturated to a finite value at long times, the longi-
tudinal diffusion constant was found not to saturate, but
rather to grow proportional to t. Rather than reflecting super-
diffusive behavior in the longitudinal direction,34 this result
might simply be a failure to simulate to long enough times to
see the longitudinal diffusion constant saturate.
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APPENDIX

In this appendix we demonstrate that the transition rates
of Eq. �13� correctly describe diffusive Langevin motion in
the limit that the energy change in one move satisfies �U
�T. Our derivation follows one given earlier35 for a single
degree of freedom, and extends it to the case of many de-
grees of freedom.

The Langevin equation of motion for diffusively moving
particles in a uniform driving force F can be written as

�ri�

�t
= − D

�U

�ri�
+ �i�, �A1�

where ri� is the � component of the position of particle i,

U��ri� � H��ri� − F · �
i

ri, �A2�

with H the Hamiltonian giving the internal interactions be-
tween the particles, and �i� is the � component of the ther-
mally fluctuating force acting on particle i. In order that the
system reaches equilibrium in the absence of the force F, the
thermal force is taken to have correlations

��i��t�� = 0, �A3�

��i��t�� j	�t��� = 2DT�ij��	��t − t�� . �A4�

The corresponding Fokker-Planck equation that describes
the probability P��ri�� for the system to be at coordinates �ri�
is then given by

�P

�t
= D�

i�
� �

�ri�
�P

�U

�ri�
� + T

�2P

�ri�
2 � . �A5�

Next we symmetrize the Fokker-Planck equation by mak-
ing the transformation
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���ri�� � eU��ri�/2TP��ri�� . �A6�

Substituting the above into the Fokker-Planck equation �A5�
gives the imaginary time Schrödinger equation

��

�t
= DT�

i�
� �2�

�ri�
2 − Vi��� , �A7�

where

Vi� = �� 1

2T

�U

�ri�
�2

−
1

2T

�2U

�ri�
2 � . �A8�

If we now discretize the coordinates, so that the ri are
confined to the sites of a periodic lattice, the natural way to
discretize Eq. �A7� is to replace the second derivative of �
with its lattice equivalent

��

�t
= DT�

i

��i
2 − Vi� , �A9�

where �i
2 is the discrete Laplacian for the lattice with respect

to coordinate ri and Vi the appropriate discretization of
��Vi�, as will be explained below. For a lattice with nearest
neighbors given by the vectors �±â��, the discrete Laplacian
acting on a scalar function f�r� is defined by

�2f�r� � c�
�

�f�r + â�� − 2f�r� + f�r − â�� , �A10�

with c an appropriate geometrical constant to give the correct
continuum limit.

If we denote the state of the system with particles at po-
sitions �ri� as s, then we can write the above Eq. �A9� in a
matrix form

��s

�t
= �

s�

M̃ss��s�, �A11�

where the matrix M̃ has elements

M̃ss = − DT�zc + Vi , �A12�

M̃ss� = cDT when s� = �ri ± â�,r j� , �A13�

M̃ss� = 0 otherwise, �A14�

where z is the number of nearest-neighbor sites. By the no-
tation in Eqs. �A13� and �A14� we mean that the only non-

zero off-diagonal elements of M̃ are those connecting states
s and s� in which only a single particle at ri has moved to a
nearest neighbor position ri± �̂�, and all other particles have
remained unchanged. This is our first result: the natural dis-
cretization of continuum Langevin dynamics to a lattice gas
dynamics involves single particle moves only.

To see what are the correct single particle hopping rates
for our lattice gas dynamics, as well as to see what is the
correct discretized form for the Vi of Eq. �A9�, consider now

the master equation for our lattice gas dynamics. If s= �ri� is
the state of the system, then the probability Ps to be in state
s is determined by

�Ps

�t
= �

s�

�Wss�Ps� − Ws�sPs � �
s�

Mss�Ps�, �A15�

where Ws�s is the rate to make a transition from state s to
state s�. We therefore have

Mss = − �
s�

Ws�s, �A16�

Mss� = Wss�, s � s�. �A17�

We next apply the same transformation as in Eq. �A5�, to
get

��s

�t
= �

ss�

eUs/2TMss�e
−Us�/2T�s�. �A18�

Comparing with Eq. �A11� we get

M̃ss� = e�Us−Us��/2TMss�, �A19�

and from Eqs. �A13� and �A17� we then get for the off-

diagonal elements of M̃,

M̃ss� = e�Us−Us��/2TWss� = cDT , �A20�

when the state s� differs from the state s by only a single
particle that has moved to a nearest neighbor site, i.e., ri
→ri± â�, with all other r j kept constant; all other off-
diagonal terms vanish. The above result then determines the
transition rates that are needed for the discrete master equa-
tion to model the continuum Langevin equation

Wss� = cDTe−�Us−Us��/2T. �A21�

Thus we arrive at the rates of Eq. �13� that define our CTMC
algorithm.

Note that the rates of Eq. �A21� satisfy a local detailed
balance

Wss�

Ws�s
= e−�Us−Us��/T. �A22�

Having determined the rates Wss�, we can now determine

the diagonal part of M̃ and hence the Vi of Eq. �A9�. Defin-
ing �Ui±� as the change in U when a single particle moves
ri→ri± â�, i.e.,

�Ui±� � U��ri ± â�,r j�� − U��ri,r j� , �A23�
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then Eqs. �A16� and �A19� give for the diagonal elements of

M̃ss,

M̃ss = Mss = − �
s�

Ws�s �A24�

=− cDT�
s�

e−�Us�−Us�/2T �A25�

=− cDT�
i�

�e−�Ui+�/2T + e−�Ui−�/2T .

�A26�

If one now expands Eq. �A26� to order ��U /2T�2, and then
uses Eq. �A10� that c����Ui+�+�Ui−��=�i

2U, and com-
pares to Eq. �A12�, one concludes that

Vi = −
�i

2U

2T
+ �

�
� c

2
��Ui+�

2T
�2

+
c

2
��Ui−�

2T
�2� .

�A27�

This is just the natural symmetric discretization of Vi

=��Vi� with Vi� given by Eq. �A8�.
We have thus shown that the CTMC dynamics, with rates

as in Eq. �13�, is the natural discretization of overdamped
Langevin dynamic in the continuum, and that CTMC be-
comes a very good approximation for the continuum dynam-
ics in the limit that the energy changes for single particle
moves, �Ui� of Eq. �A23�, satisfy �Ui��2T.
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