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Disorder Driven Melting of the Vortex Line Lattice
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The 3D XY model with random in-plane couplings is simulated to model the phase diagram of a
disordered type II superconductor as a function of temperature T and randomness strength p for fixed
applied magnetic field. As p increases to a critical pc , the first order vortex lattice melting line turns
parallel to the T axis, continuing down to low temperatures, rather than ending at a critical point. Above
pc preliminary results suggest the absence of a phase coherent vortex glass.
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Experimental [1–3], theoretical [4–6], and numerical
[7,8] studies have argued that the effect of intrinsic point
impurities on otherwise clean single crystal samples of
high Tc superconductors leads to a H-T phase diagram
with the following generic form. At low magnetic fields
H, an elastically distorted vortex lattice (the “Bragg glass”
[4]) undergoes a first order melting transition to a vortex
liquid as temperature T is increased. This melting line
Tc�H� continues as H is increased, until an “upper critical
point,” Tucp, is reached above which sharp discontinuities
in measured quantities become smeared. Increasing H at
lower temperatures, the vortex lattice transforms to a disor-
dered vortex state along the “second magnetization peak”
line, Hsp�T�, where critical currents show a sharp increase.
As T increases, the Hsp�T� line continues to the vicinity of
Tucp. In Bi2Sr2CaCu2O8 (BSCCO), Hsp�T� is only weakly
dependent on T [2], and recent experiments [9] suggest
that it is associated with a thermodynamic first order phase
transition. Whether the disordered state above Hsp�T� is
a “vortex glass” [5], characterized by true superconduct-
ing phase coherence and separated from the vortex liquid
by a sharp phase transition, or whether it is a dynamically
frozen state that smoothly crosses over to the vortex liquid,
remains a topic of controversy [10].

Since many of the experimental and numerical studies
focus on dynamical probes, from which it can sometimes
be difficult to infer a true equilibrium phase transition, and
analytical models must resort to Lindemann or other sim-
plifying approximations, it is important to establish the true
equilibrium phase diagram within a realistic model system.
Towards this end we have carried out Monte Carlo (MC)
studies of the uniformly frustrated three dimensional (3D)
XY model [11], with uncorrelated quenched random cou-
plings. For a fixed magnetic field B we map out the phase
diagram as a function of disorder strength p and tempera-
ture T . Increasing p at fixed B is believed to play a similar
role as the more physical case of increasing B at fixed p.
We find in our model a single first order phase boundary,
Tc�p�. At small p, Tc�p� is a thermally driven melting of
the vortex lattice. Increasing p, there is a maximum pc

above which disorder destroys the vortex lattice; near pc,
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the line Tc�p� turns parallel to the T axis and continues
down to low T . No critical point separates the thermal
from the disorder driven sections of the phase boundary.
Recent experiments on BSCCO [12] are in complete agree-
ment with this result. For p . pc, our preliminary results
suggest the absence of a true phase coherent vortex glass.

The model we study is given by the Hamiltonian

H �ui� � 2
X

bonds im

Jim cos�ui 2 ui1m̂ 2 Aim� , (1)

where ui is the phase of the superconducting wave func-
tion on site i of a 3D periodic cubic grid of sites, the
sum is over all bonds in directions m̂ � x̂, ŷ, ẑ, and Aim �
�2p�f0�

Ri1m̂

i A ? d� is the integral of the magnetic vector
potential across bond im, where === 3 A � Bẑ is a fixed
uniform magnetic field in the ẑ direction. To model ran-
dom vortex pins in the xy planes we take [13]

Jim � Jz, m � z ,

Jim � J��1 1 peim�, m � x, y .
(2)

The coupling between planes Jz is uniform, while each
bond in the xy plane is randomly perturbed about the con-
stant value J�; the eim are independent Gaussian random
variables with �eim� � 0, �e2

im� � 1, and p controls the
strength of the disorder. For computational convenience
we choose Jz�J� � 1�40, with a vortex line density of
f � a2

�B�f0 � 1�20, where a� is the grid spacing in
the xy plane, and f0 � hc�2e is the flux quantum. Our
system size is Lx � Ly � 40, with Lz � 16. To check
finite size effects, we also considered Lz � 24 and 32
for certain cases. Our runs are typically 1 10 3 107 MC
sweeps through the entire lattice near transitions. Results
below are for a single realization of the disorder only. The
extremely time consuming nature of our simulations ex-
cluded any serious disorder averaging or finite size scaling.
We have, however, considered two other realizations of the
disorder and have found qualitatively the same behavior.

In the pure model, p � 0, the vortex line lattice has a
first order melting transition to a vortex line liquid [14].
To map out this melting transition line in the p-T plane
we fix the disorder strength p, and cool from high T ,
© 2001 The American Physical Society 137001-1
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until we reach a temperature Tc�p� at which we observe
repeated hopping between coexisting vortex liquid and
lattice phases. To detect the vortex lattice, we measure
the in-plane vortex structure function [normalized so that
S�0� � 1],

S�k�� �
1

f2N

X

r�,z
�nz�r�, z�nz�0, z��eik�?r� , (3)

where nz is the vorticity in the xy plane, and N � LxLyLz .
S�k�� will have Bragg peaks at the reciprocal lattice vec-
tors �K	 of the vortex lattice. We find that the vortex lattice
always orders into the same periodicity as that of the pure
p � 0 case, where there are two possible lattice orienta-
tions related by a 90± rotation. Defining S1 as the average
of S�K� over the six smallest nonzero �K	 for one lattice
orientation, and S0

1 as that for the other orientation, we
identify the vortex lattice as states in which either S1 or
S0

1 is large, according to which of the two lattice orienta-
tions has formed; in contrast, in the vortex liquid, both S1
and S0

1 are small. In Fig. 1 we plot S1 and S0
1 vs MC simu-

lation time t at Tc�p� for two disorder strengths. For the
weaker disorder, p � 0.06, we see both orientations of lat-
tice coexisting with the liquid. For the stronger p � 0.09,
the disorder induced breaking of the grid’s rotational sym-
metry, which in principle exists for any value of p in any
specific sample, becomes strong enough that we see only
coexistence between one particular lattice orientation and
the liquid [15]. The repeated hopping between lattice and
liquid in Fig. 1 verifies that we are well equilibrated. Vary-
ing p, we thus determine the melting line Tc�p� shown in
Fig. 2. Comparing Lz � 16 with Lz � 24, we found only
a small shift in the phase boundary as Lz increased [16].

We now determine if the transition Tc�p� remains first
order, as p increases. First order transitions are character-
ized by discontinuous jumps in thermodynamic quantities.
Here we consider the average energy per site E, and a vari-
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FIG. 1. S1 (�) and S0
1 (�) vs the number of Monte Carlo

sweeps t for disorder strengths (a) p � 0.06, Tc � 0.255, and
(b) p � 0.09, Tc � 0.200. The system width is Lz � 16. Each
data point is an average over 216 sweeps.
137001-2
able Q defined to be conjugate to the disorder strength p,

E � 2
1
N

X

im

Jim�cos�ui 2 ui1m̂ 2 Aim�� , (4)

Q 

1
N

≠F

≠p
� 2

J�

N

X

i,m�x,y
eim�cos�ui 2 ui1m̂ 2 Aim�� ,

(5)

where F is the total free energy.
To see if there is a discrete jump in E or Q at Tc�p�,

we use the values of S1 and S0
1 to sort microscopic states

as either vortex lattice or liquid. We then compute the
properties of each phase separately. In Figs. 3a and 3b we
show semilog plots of the histograms P�DS1� of values
of DS1 
 S1 2 S0

1 encountered during our simulation at
Tc�p�, for the two cases of Fig. 1. In Fig. 3a, for p �
0.06, we see separated peaks for the liquid at DS1 � 0,
and for the two lattice orientations at finite positive and
negative values of DS1. In Fig. 3b, for the stronger p �
0.09, we see only peaks for the liquid and one of the two
lattice orientations. Fitting these peaks to empirical forms
(Gaussian for the lattice, exponential for the liquid; these
are the solid lines in Figs. 3a and 3b), we determine the
relative probability for a state with a given value of DS1 to
belong to the liquid phase, or either of the two orientations
of the lattice phases. Sorting through our microscopic
states we probabilistically assign each to one of these three
phases. We then plot the histograms of E and Q separately
for each phase.

In Fig. 3c we show the histograms P�E� for p � 0.06.
While the two lattice orientations have the same energy
distribution, there is a clear difference between the liquid
and the lattice. This results in a finite energy jump DE
at the melting transition, which is thus first order. The his-
tograms P�Q� for p � 0.06 are shown in Fig. 3e, where
we also see a finite jump DQ between liquid and lattice;
for Q the disorder couples differently to the two lattice
orientations.

In Fig. 3d we show the histograms P�E� for the more
strongly disordered p � 0.09. In contrast to Fig. 3c, we
find that the energy distributions of the liquid and the lat-
tice are now identical. Thus there is no energy jump, and
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FIG. 2. Vortex lattice melting phase boundary in the p-T
plane, for Lz � 16 (�) and Lz � 24 (�).
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FIG. 3. Histograms of DS1 
 S1 2 S0
1, energy E, and disor-

der conjugate Q for p � 0.06, Tc � 0.255 and p � 0.09, Tc �
0.200, for Lz � 16, at the melting temperature Tc�p�. (�) and
(1) are for the two lattice orientations; (3) is for the liquid.

moreover no specific heat jump, in going from liquid to lat-
tice. However the histograms of P�Q�, shown in Fig. 3f,
remain clearly different for liquid and lattice. Thus there
is a finite jump DQ at the melting transition, and the tran-
sition remains first order. Combining DE � 0 with the
Clausius-Clapeyron relation, we conclude that the melting
line must now be perfectly parallel to the temperature axis
[17], and the transition becomes disorder, rather than ther-
mally, driven. As shown in Fig. 2, we have been able to
follow the melting line from where it first turns parallel to
the T axis, down to several lower temperatures.

In Fig. 4 we plot DE and DQ vs p along the melting line
for Lz � 16 and 24. That DE and DQ never simultane-
ously vanish indicates that no critical point exists along the
melting line. Our measured jumps in DE and DQ increase
somewhat for increasing Lz , indicating the presence of fi-
nite size effects in our system (see further discussion later
on). The fact that the jumps increase, however, supports
the conclusion of a first order transition in the thermody-
namic limit.

Although our simulations are for a specific value of B, if
we assume that the above result continues to hold for gen-
eral values of B, then it must be true that the phase diagram
in the B-T plane at fixed p similarly turns parallel to the
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FIG. 4. Jumps DE and DQ vs p along the melting line, Tc�p�.
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lattice orientations. Only for DQ in Lz � 16 do we see a
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T axis at low temperatures. The point where the melting
line first turns parallel to the T axis has many features in
common with an upper critical point; discontinuities as T
varies across the melting line below this point will cease
to exist as T varies above this point, yet there is no true
critical end point and the first order melting line extends
continuously down to lower temperatures.

Next, we investigate the superconducting phase coher-
ence in our model, by computing the helicity modulus [11],
Yz, parallel to the applied magnetic field. Yz � 0 indi-
cates the absence of phase coherence. In Fig. 5a we show
Yz vs T , for two different disorder strengths p , pc �
0.09, comparing systems with Lz � 16 and Lz � 24. In
both cases we see a discontinuous jump in Yz at the melt-
ing transition. As Lz is increased, we see that Yz vanishes
in the vortex liquid; the vortex lattice melting thus marks
the loss of superconducting phase coherence.

We now consider p . pc. In Fig. 5b we show Yz vs
T for p � 0.12 and system sizes Lz � 16 and Lz � 32.
We see a dramatic finite size effect, suggesting that Yz de-
creases to zero as Lz ! ` and so there is no phase coherent
vortex glass. The difficulty in equilibrating our Lz � 32
system at low T , however, makes this conclusion still pre-
liminary. Similar results were found in dynamical simula-
tions by Reichhardt et al. [8]. Kawamura [18], however,
found a finite vortex glass Tc in studies of a model simi-
lar to Eq. (1), but at a much higher field and disorder. A
vortex glass transition has also recently been found for
an interacting vortex line model with f � 1�2 and very
strong pinning [19].

Finally, in Fig. 6 we plot the longitudinal phase angle
correlation length, jz, in the liquid T $ Tc�p�, as deter-
mined by fitting the correlation function,

C�z� �
X

j

�ei�uj2uj1zẑ�� , (6)

to an exponential decay for z , Lz�2. For fixed T , jz

decreases as p increases. However, since Tc�p� decreases
as p increases, the value jz���Tc�p���� at melting increases as
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FIG. 6. Longitudinal correlation length jz vs T in the vortex
liquid phase for (a) several values of disorder p , pc � 0.09 at
Lz � 24; and for (b) p � 0.12 . pc at Lz � 32, in comparison
to p � 0.07 , pc from (a).

p increases. Even in the disordered state above pc, jz can
be as large as in the liquid just above the thermally driven
melting line. Thus the disorder driven melting need not be
thought of as a layer decoupling transition.

As we were finishing this work, we learned of similar
work by Nonomura and Hu [20], using the same model
(1) with a slightly different scheme for the randomness,
a much stronger anisotropy Jz�J� � 1�400, and a vortex
density f � 1�25. They too find a first order vortex lattice
disordering line nearly parallel to the T axis at low T . This
agreement with our results suggests the robustness of our
conclusions to the particular parameters we have chosen.
However Nonomura and Hu also claim to find a first or-
der “vortex slush” to liquid transition extending to higher
disorder from the thermally driven melting line, as well as
a vortex glass to vortex slush transition at lower T . We too
find a peak in specific heat for p . pc that lies at a T in
the vicinity of the thermally driven melting line, however
we have interpreted this as a smooth crossover rather than
a true phase transition. Further work is required to clarify
the nature of the phase diagram in this region.
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