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We present a solution to a long-standing basic problem encountered in the theory of structure

determination of crystalline media from x-ray diffraction experiments; namely, the problem of determin-

ing phases of the diffracted beams.
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In a well-known paper published almost 100 years ago,
Laue laid the foundation for a method for determining the
structure of crystalline media from x-ray diffraction ex-
periment [1]. Since then the method has become of basic
importance in solid state physics (see, for example, [2,3])
and in other fields, sometimes using neutrons or electrons
rather than x rays. However, as is well known, the method
suffers from a serious limitation due to the inability to
measure phases of the diffracted beams.

In this Letter we show how the phases may be deter-
mined. Before doing so we point out that ‘‘the phase
problem,’’ as usually formulated, has no solution and is,
in fact, rather meaningless. We will reformulate it and
show that the reformulated problem has a solution which
allows unambiguous determination of the crystal structure
to be made [4].

We begin with the following observation: In usual treat-
ments, the incident x-ray beam is assumed to be mono-
chromatic. That is an idealization, because monochromatic
beams are not realizable. Any beam which can be produced
in a laboratory is, at best, quasimonochromatic; i.e., its
spectral width�! is much smaller than its mean frequency
�!. Both the amplitudes and the phases of the field os-
cillations are random variables and, hence, even if they
could be measured, they would not provide the required
information

The measurable and physically meaningful quantities
are the (averaged) intensities and, more generally, certain
correlation functions, well known in coherence theory of
light ([5], Sec. 10.3; [6], Secs 3.1 and 4.1). In this Letter we
show that the measurable correlation functions of an x-ray
beam contain information about both the amplitudes and
the phases which are needed to determine the crystalline
structure, provided that the beams are spatially coherent—
a concept which is not equivalent to monochromaticity [7],
as is frequently incorrectly assumed. Spatially coherent
beams are routinely generated at optical wavelengths and
have been produced in recent years in the x-ray region of
the electromagnetic spectrum ([8], Chap. 8; [9]).

To obtain the required solution we begin with the so-
called mutual coherence function of a fluctuating field
Vðr; tÞ at a point P, specified by position vector r, at time

t. It is defined by the expression

�ðr1; r2; �Þ ¼ hV�ðr1; tÞVðr2; tþ �Þi; (1)

where the angular brackets denote the ensemble average.
We assume that the field is statistically stationary, at least
in the wide sense ([6], p. 24). The Fourier transform of �

Wðr1; r2; !Þ ¼
Z 1

�1
�ðr1; r2; �Þei!�d� (2)

is known as the cross-spectral density function of the field.
It can be shown that it is also a correlation function. More
specifically one can show ([6], Sec. 4.1; [10], Sec. 4.7.2)
that there exists an ensemble of frequency-dependent fields
Uðr; !Þ such that

Wðr1; r2; !Þ ¼ hU�ðr1; !ÞUðr2; !Þi!; (3)

where the angular brackets on the right-hand side, with the
subscript !, indicate that the average is taken over the
ensemble fUðr; !Þg. The quantity

Wðr; r; !Þ ¼ Iðr; !Þ (4)

represents the averaged intensity at frequency ! of the
field, at the point PðrÞ, and

�ðr1; r2; !Þ ¼ Wðr1; r2; !Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wðr1; r1; !ÞWðr2; r2; !Þp (5)

is known as the spectral degree of coherence of the field
fluctuations at the points P1ðr1Þ and P2ðr2Þ. It may be
shown that it is bounded by zero and unity in absolute
value. The former value, � ¼ 0, represents complete spa-
tial incoherence; the latter, j�j ¼ 1, represents complete
spatial coherence at frequency ! of the field at the two
points. Both the cross-spectral density function and the
spectral degree of coherence are measurable quantities,
as we will see shortly.
It has been shown ([10], Sec. 4.5.3; [11]) that if the field

is spatially completely coherent at frequency !0 through-
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out a three-dimensional domainD, i.e., if j�ðr1; r2; !0Þj ¼
1 for all r1 2 D, r2 2 D, then the cross-spectral density
function of the field at that frequency has necessarily the
factorized form

Wðr1; r2; !0Þ ¼ u�ðr1; !0Þuðr2; !0Þ: (6)

Moreover, throughout the domain D, uðr; !0Þ satisfies the
Helmholtz equation

ðr2 þ k20Þuðr; !0Þ ¼ 0; (7)

where k0 ¼ !0=c, c being the speed of light in vacuum.
If we set

uðr; !0Þ ¼ juðr; !0Þjei�ðr;!0Þ; (8)

we readily find from Eqs. (5), (6), and (8) that

�ðr1; r2; !0Þ ¼ expfi½�ðr2; !0Þ ��ðr1; !0Þ�g: (9)

In view of Eq. (7) the function uðr; !0Þ may be identified
with the space-dependent part of a monochromatic wave
function vðr; tÞ ¼ uðr; !0Þ expð�i!0tÞ. Thus we have
shown that one may associate with any wide-sense statis-
tically stationary field that in some region of space is
spatially coherent at frequency !0 a monochromatic field
vðr; tÞ of the same frequency, whose space-dependent part
uðr; !0Þ yields the (generally complex) cross-spectral den-
sity function of the field via Eq. (6). We stress that this
monochromatic field is not the actual field (which exhibits
random fluctuations), but it is equivalent to it in the sense
that both have the same cross-spectral density function
Wðr1; r2; !0Þ, whose modulus and phase can be deter-
mined by experiment, as we will now show.

Suppose we place an opaque screen A in the path of a
beam which is assumed to be quasimonochromatic, with
mean frequency$. Suppose further that the opaque screen
has small openings at points Q1ðr1Þ and Q2ðr2Þ and we
measure the average intensity on a plane B, parallel to A
(see Fig. 1); i.e., we perform Young’s interference experi-
ment. The average intensity at a point PðrÞ on the screen B
is given by the so-called spectral intensity law [[6], p. 65,

Eq. (8)], which (in slightly different notation) may be
expressed as

IðPÞ¼ Ið1ÞðPÞþIð2ÞðPÞþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ið1ÞðPÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ið2ÞðPÞ

q
j�ðQ1;Q2;$Þj

�cos½�ðQ1;Q2;$Þ���: (10)

Here Ið1ÞðPÞ denotes the average intensity at the point PðrÞ
of the beam which reaches that point from the pinhole at

Q1 alone (i.e., with the pinhole at Q2 being closed), I
ð2ÞðPÞ

having a similar meaning. Further, �ðQ1; Q2; $Þ is the
phase of the spectral degree of coherence �ðQ1; Q2; $Þ
and � ¼ �kðR2 � R1Þ, ( �k ¼ $=c) is the phase difference
associated with the distances from the two pinholes to the
point PðrÞ as shown in Fig. 1. As � varies, the intensity
IðPÞ traces out a sinusoidal interference pattern. The visi-
bility of the interference fringes, which is a measure of
their sharpness, can readily be shown to be proportional to
j�j, and the location of the intensity maxima is propor-
tional to arg� ([5], p. 570).
It is clear that from measurement of the average inten-

sities IðPÞ, Ið1ÞðPÞ, and Ið2ÞðPÞ for several values of �, one
can determine, by the use of Eq. (10), both the amplitude
j�j and the phase � ¼ arg� of the spectral degree of
coherence. Measurements of this kind are routinely made
with light [12] (see also [13]) and can also be made with
x rays, as is evident from the discussions of interference
experiments described, for example, in Refs. [8,9].
From the preceding discussion it is clear that a realistic

procedure of interpreting results of x-ray diffraction ex-
periments for determining structure of solids is not by
means of fictitious monochromatic waves (beams), but
rather by means of the space-dependent part uðr; !0Þ of
the wave function vðr; tÞ, determined from correlation
measurements. It is clear that our analysis introduces a
procedure that overcomes the long-standing difficulties
relating to measuring phases of diffracted beams in struc-
ture determination of crystals.
Finally we mention that the possibility of measuring the

phase of the space-dependent part uðrÞ of the ‘‘equivalent’’
monochromatic wave function of spatially coherent light
was discussed not long ago [14] and has been verified
experimentally [15].
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