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Abstract
This paper explains why quantum entanglement does not provide a way of faster-than-light commu-

nication. To discuss the reason, the concepts of convex set and extremal point are introduced. Then it
follows that density matrices form a convex set. This means that different ways of preparation could
lead to the same mixed state. Hence, although via entanglement, one can immediately prepare a far
away particle in different ways, that the prepared state is the same means that it is impossible to read
the information.

1 Introduction

Quantum entanglement is one of the most fascinating and counterintuitive phenomena in quantum
mechanics. If there is a pair of entangled particles, measuring the state of one of them, you would know
the state of the other particle immediately, even if these two particles are on two opposite sides of the
universe. This leads to some misconceptions in the public that we can send information faster than
light using entangled particles. For example, in the science fiction The Three Body Problem, the aliens
are able to establish real time communication with people on the Earth from 4 light years away via
entangled particles. However, this is impossible. This paper will explain why quantum entanglement
does not allow faster-than-light communication. The reason is the ambiguity in the preparation of mixed
states. To illustrate this ambiguity, I will first define two useful mathematical concepts: convex set and
extremal points.

2 Convex Set and Extremal Point

First, we define convex set. A subset S of a vector space is said to be convex if the set contains the
straight line segment connecting any two points in the set. That is, for any s1 ∈ S and s2 ∈ S, if
s(λ) = λs1 +(1−λ)s2 are in S for any 0 ≤ λ ≤ 1, then S is convex. For example, if we consider the x-y
plane as shown in fig. 1, the set S is a convex set, while the set T is not a convex set, because the line
L is not contained in the set.

Figure 1: The set S is a convex set, but the set T is not.
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Then we define extremal point. A point in a convex set S is an extremal point if it does not lie in
any open line segment joining two distinct points in S. That is, the point s is called an extremal point
if there do not exist two points s1 and s2 in S such that s = λs1+(1−λ)s2 for any 0 < λ < 1. Consider
two sets in the x-y plane again, as shown in fig. 2, the extremal points of S are all the points on its edge.
The extremal points of R are a, b, and c.

Figure 2: Examples of extremal points

Now let’s go back to physics. In quantum mechanics, if a matrix ρ satisfies 1)ρ is self-adjoint, 2)ρ is
positive, i.e., ⟨ψ|ρ|ψ⟩ ≥ 0 for any |ψ⟩, and 3)tr(ρ) = 1, then ρ is called a density matrix and represents
the state of a system. To show that density matrices form a convex set, we can pick two density matrices
ρ1 and ρ2, then check if their convex sum ρ(λ) = λρ1+(1−λ)ρ2 satisfies the three properties. It is easy
to see that ρ(λ) satisfies 1) and 3). To check 2), we evaluate:

⟨ψ|ρ(λ)|ψ⟩ = λ⟨ψ|ρ1|ψ⟩+ (1− λ)⟨ψ|ρ2|ψ⟩ ≥ 0 (1)

This inequation holds for any |ψ⟩. Hence, density matrices form a convex set.

3 Ambiguity in the Preparation of Mixed State

Forming a convex set means that if a density matrix ρ is not an extremal point, it can be expressed as a
convex sum of two other density matrices ρ = λρ1+(1−λ)ρ2. Interpreting this physically, it means that
if we prepare the state ρ1 with classical probability λ (the type of probability produced by toasting a
coin or by a random number generator), and ρ2 with classical probability 1−λ, then we get the state ρ.
This is called the ambiguity in preparation. But what are the extremal points? In fact, we can see from
the physical interpretation that the extremal points are the states that can’t be prepared as the classical
probabilistic combination of two other states. These are pure states, since the pure state ρ = |ψ⟩⟨ψ| is
the only state that will guarantee the outcome 1 if we measure the projection E = |ψ⟩⟨ψ|.

Let’s consider an example. In the two dimensional Hilbert space, a density matrix can be thought
of as a vector in the Bloch ball. In fact, there is a one to one correspondence between a vector P⃗ with
norm ≤ 1 in R3 and a density matrix ρ(P⃗ ) given by

ρ(P⃗ ) =
1

2
(I+ P⃗ · σ⃗) (2)

We can see that if we pick any two states in the Bloch ball, the line connecting them is in the ball, and
the pure states, which are on the surface of the ball, are not contained in any open line segment.

Now consider the density matrix ρ = 1
2I. It is right at the center of the Bloch ball, since 1

2I =
1
2 (I+0 · σ⃗). Lines that go through this point also go through two antipodal points on the surface of the
ball.
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Figure 3: ρ is in the center of the Bloch ball. Lines that go through it also go through two
points that are exactly opposite of each other on the surface of the ball

Hence, ρ is the convex sum of any two orthogonal pure states. For example,

ρ =
1

2
| ↑x⟩⟨↑x |+ 1

2
| ↓x⟩⟨↓x | (3)

Also,

ρ =
1

2
| ↑z⟩⟨↑z |+ 1

2
| ↓z⟩⟨↓z | (4)

We will see this ambiguity of ρ comes in handy in the explanation of why faster-than-light communication
is not allowed.

4 No Faster-Than-Light Communication

The misconception of faster-than-light communication starts with a pair of entangled particles A and
B. Suppose their states is the bipartite pure state

|ψ⟩AB =
1√
2
(| ↑x⟩A| ↑x⟩B + | ↑x⟩A| ↑x⟩B) (5)

By measuring B in the {| ↑x⟩B , | ↓x⟩B} basis, we have 1
2 probability of getting the state | ↑x⟩A and 1

2
probability of getting the state | ↓x⟩A, so the state of A is prepared as

ρA0 =
1

2
| ↑x⟩⟨↑x |+ 1

2
| ↓x⟩⟨↓x | (6)

Moreover, since ρA0 has degenerate nonzero eigenvalues, we can apply unitary transformations on HA

and HB . These transformations preserve |ψ⟩AB . Hence, |ψ⟩AB could also be expressed as

|ψ⟩AB =
1√
2
(| ↑z⟩A| ↑z⟩B + | ↑z⟩A| ↑z⟩B) (7)

Similarly, by measuring B in the {| ↑z⟩B , | ↓z⟩B} basis, we also have 1
2 probability of getting the state

| ↑z⟩A and 1
2 probability of getting the state | ↓z⟩A, which means the density matrix of A is

ρA1 =
1

2
| ↑z⟩⟨↑z |+ 1

2
| ↓z⟩⟨↓z | (8)

One might come up with the following scenario of faster-than-light communication. If we prepare a
many pairs of entangled particles with state |ψ⟩AB , then Bob takes the B particles to another galaxy,
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and Alice stays on the Earth with the A particles. If Bob wants to send some information to Alice, he
could measure his particles along either the x or the z axis one by one. This will correspondingly prepare
the spin of Alice’s particles along either x or z axis. If they agree that spin along the x axis stands for
0, and spin along the z axis stands for 1, then Alice could check the spin of her particles to read the
information.

However, as shown before, ρA0 and ρA1 are the same state. Although their preparations are different,
Alice will not be able to distinguish between them no matter how she observes.

5 Summary

In this paper we introduce the concepts of convex set and extremal point. Then we show that density
matrices form a convex set, which means that different ways of preparation could still lead to the same
state. This is exactly what happens in the conceived situation, when Bob wants to encode his information
in the way he prepares Alice’s particles, but he ends up with preparing the same state, so it is impossible
to read the information.
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