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Abstract

...In quantum universe, there are no such things as accidents; only possibilities folded into

existence by perception.

- J. Michael Straczynski

“Much is currently made of the concept of information in physics, following the rapid growth

of the fields of quantum information theory and quantum computation. These are new and

exciting fields of physics whose interests for those concerned with the foundations and

conceptual status of quantum mechanics are manifold. On the experimental side, the focus on

the ability to manipulate and control individual quantum systems, both for computational

and cryptographic purposes has led not only to detailed realization of many of the gedanken

experiments familiar from foundational discussions but also to wholly new demonstrations of

the oddity of the quantum world. Developments on the theoretical side are no less important

or interesting. Concentration of the possible ways of using distinctively quantum mechanical

properties of systems for the purposes of carrying and processing information has led to

considerable deepening of our understanding of quantum theory. The study of the

phenomenon of entanglement, for example, has come on in leaps and bounds under the aegis

of quantum information.” 1 This paper is based on the lecture I gave for the Kapitza Society,

where the objective this semester was to introduce ourselves to the emerging field of quantum

information theory.

1 Introduction

With the assumption that the reader is familiar with the fact that the state of an isolated quantum

system can be represented by a vector in the state space, we shall see, in this paper, that it can

also be represented (more conveniently) by a Hermitean operator known as the ‘density operator’2.

We shall descry that the density operator is a mathematical tool devised to not only represent the

state of an isolated system, but also the state of a system that interacts significantly with its

environment, or even the state of an ensemble of systems prepared in different ways.

In this paper, we aim to grasp this profound abstraction (to a modest degree), as it simplifies

the understanding of many quantum phenomena such as noise, communication, and quantum

statistical mechanics. We begin by laying a qualitative foundation by looking at familiar scenarios

and terminology to thoroughly understand what the density matrix means and then provide the

1Timpson, C. G. (2013). Quantum information theory and the foundations of quantum mechanics. OUP Oxford.
2The terms ‘density matrix’ and ‘density operator’ are used interchangeably.
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mathematical formalism and prove the basic properties of a density operator. We later look at

a way to represent, derive, and deduce information about a quantum state in a 2-level system

through the Bloch sphere3.

2 The Density Matrix

Richard Feynman (physicist, 1918-1988) once said that while performing experiments or tackling

quantum mechanical problems, we divide the universe into two parts: the first, about which we have

(some) information and we’re interested in investigating more about, and the second, everything

else. The first part, the part that we focus on, is our ‘system’ and if it can be described by a single

vector, then it is in what is known as a ‘pure state’. Now consider our system being connected to

a bath and it is known to interact with it in some definable manner such that the effects of the

interaction cannot be neglected while making measurements on the system. The ‘bath’ here is a

collection of random variables that fluctuate in a way we have no information about - it is the

part of the universe that is outside the system but still of significance to us. Being able to express

all the information contained by a system (which is now in a ‘mixed state’) in such a bath is our

motivation to formalize and use density matrices.

Suppose that we’re studying the phenomenon of polarization of light. And it is known that the

light we’re using can be polarized either horizontally or vertically. Let’s say we denote horizontal

polarization by the vector h⃗ =

1
0

 (which is a ‘pure state’) and vertical polarization by the vector

v⃗ =

0
1

 (which is also a ‘pure state’). When we see a diagonally polarized light, say d⃗, we

immediately recognize that it is composed of the h⃗ and v⃗ components:

d⃗ = αh⃗+ βv⃗ = α

1
0

+ β

0
1

 =

α
0

+

0
β

 =

α
β

 (1)

where (α, β) ∈ R. This demonstrates that d⃗ is in a pure state as well, right now. We are acquainted

with one way of obtaining a matrix from a vector - by multiplying the vector with its transpose.

3Named after the physicist Felix Bloch.
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For h⃗ and v⃗ for instance:

ρ̂h = h⃗h⃗T =

1
0

[
1 0

]
=

1 0

0 0

 (2)

ρ̂v = v⃗v⃗T =

0
1

[
0 1

]
=

0 0

0 1

 (3)

Note that the respective vectors are enough to contain all the information about the “states” that

the matrices above do and therefore it is verified that h⃗ and v⃗ are pure states.

The density operator formalism allows the treatment of pure states as special cases of statistical

mixtures. We may say that if we know with certainty that the system is in the pure state |ψ⟩, we

can represent that state by a statistical mixture having |ψ⟩ as its sole element with the assumption

that the state has norm unity; its density operator is the projector operator (outer product).

For some quantum state, say a two-level spin system |ψ⟩ = a |↑⟩ + b |↓⟩ with |a|2 + |b|2 = 1

(normalization condition) and (a, b) ∈ C, we have:

ρ̂ = |ψ⟩ ⟨ψ|

= (a |↑⟩+ b |↓⟩)(a∗ ⟨↑|+ b∗ ⟨↓|)

=

a
1
0

+ b

0
1


(

a∗
[
1 0

]
+ b∗

[
0 1

])

=

a
b

[
a∗ b∗

]

=

|a|2 ab∗

a∗b |b|2



(4)

Now suppose that our light d⃗ is placed in a bath (air, for example) and it interacts with it in some

fashion that we can’t know. Initially, i.e. at time t = 0, we could describe d⃗ using only one vector

(equation 1). However, at time t = T > 0, we don’t know what state our light is in. This means

that a single vector is incapable of containing and/or conveying all the information about d⃗ at time

T . Let’s say d⃗ (made of h⃗ and v⃗) is totally unpolarized at the time of measurement t = T . If we

were to choose a photon at random, there is a 50% probability that it is horizontally polarized and

a 50% probability that it is vertically polarized. Clearly, we need at least a matrix to completely
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hold this information and to describe d⃗, since d⃗ is now in a mixed state.

Thus, those matrices that provide us with information such as the probability of finding the

system in a particular state, and how the interaction between the system and the bath takes place

(coherence), are known as a density matrices. In a density matrix, the diagonal elements represent

the probability while the off-diagonal elements represent coherence.

We may represent the above situation in the following manner:

ρ =

1
2 0

0 1
2

 (5)

where 1
2 is the probability of finding a photon in h⃗ or v⃗ polarization and the zeroes mean that h⃗ and

v⃗ do not interact with or influence each other - they are independent of each other’s occurrence;

there is no ‘phase relationship’ between them due to orthogonality. We evidently see that this

matrix cannot be expressed as a single vector. If we tried doing so, we’d see that we lose some

information in that process. This verifies the fact that our system in a mixed state now.

Formally, we may define the density matrix for a mixed state as follows:

We define the mixed state as a probability distribution of pure states ((|ψ1⟩ , p1), (|ψ2⟩ , p2), ...(|ψn⟩ , pn)).

Then, the density matrix is given by

ρ =
n∑

k=1

pk |ψk⟩ ⟨ψk| (6)

where
∑

k pk = 1. Thus, ρij =
∑

k pk ⟨i|ψ⟩ ⟨ψ|j⟩.

2.1 Properties of a density operator

Having gained the basic understanding of what a density operator is, let us look at the properties

of a density operator as follows:

1) ρ is positive.

Illustration:

⟨ψ|ρ|ψ⟩ =
∑
i

| ⟨ψ|i⟩ |2 ≥ 0 (7)
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2) There is no global phase ambiguity.

Consider a state |ψ⟩. The corresponding density operator ρ = |ψ⟩ ⟨ψ|. Now consider another state

|ψ′⟩ = eiθ |ψ⟩. The corresponding density operator,

ρ′ = |ψ′⟩ ⟨ψ′|

= eiθ |ψ⟩ ⟨ψ| e−iθ

= |ψ⟩ ⟨ψ|

= ρ

(8)

This shows that multiplying a state vector by a global phase does not affect any physical predictions.

4

3) It is Hermitian, which means ρ∗ij = ρji.

Proof (for a pure state): The density operator is given by ρ = |ψ⟩ ⟨ψ| (equation 4). The matrix

elements of the density operator are then given by

ρij = ⟨i|ψ⟩ ⟨ψ|j⟩ (9)

Then,

ρ∗ij = ⟨j|ψ⟩ ⟨ψ|i⟩

= ρji

(10)

An implication of this property is that the density matrix is diagonalizable with the diagonal

matrix elements given by the probabilities pk. Thus,

tr(ρ̂2) =
∑
k

p2k ≤ 1 (11)

The tr(ρ̂2) = 1 only for pure states, since in that case there is only one non-zero pk which is 1,

which means p2k = 1 as well, and so we’re left with p2k < 1 for mixed states.

4) Trace (sum of the diagonal matrix elements) of the density operator is equal to 1.

4Density operator for pure quantum states. (2020, September 14). Retrieved from
https://www.youtube.com/watch?v=DQEtg8pWT8E
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Proof for a pure state:

tr(ρ̂) =
∑
i

ρii

=
∑
i

⟨i|ψ⟩ ⟨ψ|i⟩

=
∑
i

⟨ψ|i⟩ ⟨i|ψ⟩

= ⟨ψ|ψ⟩

= 1

(12)

Proof for a mixed state:

tr(ρ̂) =
∑
i

∑
k

pk ⟨i|ψ⟩ ⟨ψ|i⟩

=
∑
k

pk
∑
i

⟨ψ|i⟩ ⟨i|ψ⟩

=
∑
k

pk

= 1

(13)

Notice that the diagonal entries in equation 5 add up to 1 (as they should)
(
1
2 + 1

2 = 1
)
. Also note

that equation 4, this property gets us back to the normalization condition.

5) ρ̂2 = ρ̂

Proof (for a pure state):

ρ̂2 = |ψ⟩ ⟨ψ|ψ⟩ ⟨ψ|

= |ψ⟩ ⟨ψ|

= ρ̂

(14)

Since we’re dealing with statistical mixtures, an important result to note is the expectation value

for an observable A in terms of the density operator, ⟨A⟩ = tr(Âρ̂).
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Proof for a pure state:

⟨A⟩ = ⟨ψ|Â|ψ⟩

=
∑
i,j

⟨ψ|i⟩ ⟨i|Â|j⟩ ⟨j|ψ⟩

=
∑
i,j

Aijρji

= tr(Âρ̂)

(15)

For a mixed state,

⟨A⟩ =
∑
k

pk ⟨ψ|Â|ψ⟩

=
∑
i,j,k

pk ⟨ψ|i⟩ ⟨i|Â|j⟩ ⟨j|ψ⟩

=
∑
i,j

⟨i|Â|j⟩
∑
k

pk ⟨j|ψ⟩ ⟨ψ|i⟩

=
∑
i,j

Aijρji

= tr(Âρ̂)

(16)

2.2 The Bloch Sphere

“How does real three dimensional space that we live in, correspond to the two dimensional complex

vector space within which a qubit sits? Answering this question is really important if we want to

manipulate the state of a qubit in a three dimensional real space. It turns out, mathematically

at least, there’s a very beautiful answer to this question which comes from the Bloch sphere

representation of a qubit.” (Sandro Mareco)

The Bloch sphere is a geometrical representation of a quantum state in a 2-level system. It gives

us a way to measure quantum spin along arbitrary direction in space. We do this by finding the

correspondence between quantum states |ψ⟩ which are vectors in C2, and unit vectors n̂ in R3 - if

we were to measure the quantum state |ψ⟩ along the axis spanned by n̂, this quantum spin state

will always be spin-up in that axis.
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We know that we can express any vector n⃗ in 3D space in terms of spherical coordinates as follows:

nx = sin(θ) cos(ϕ) (17)

ny = sin(θ) sin(ϕ) (18)

nz = cos(θ) (19)

which helps us express n⃗ in terms of two parameters θ and ϕ.

The correspondence is as follows:

Let’s say we have a vector n̂. We have that the quantum state that is always pointing in the n̂

direction |↑n⟩ has components

 cos( θ2)

eiϕ sin( θ2)

 (by convention).

If, say we have a state |ψ⟩, then n̂ (called the ‘Bloch vector’) = (⟨ψ|σx|ψ⟩ , ⟨ψ|σy|ψ⟩ , ⟨ψ|σz|ψ⟩),

where σx =

0 1

1 0

, σy =

0 −i

i 0

, σz =

1 0

0 −1

 are the Pauli matrices.

For convenience, let σ⃗ = (σx, σy, σz). The measurement along any axis can be made using:

n⃗ · σ⃗ = nxσx + nyσy + nzσz

= sin(θ) cos(ϕ)

0 1

1 0

+ sin(θ) sin(ϕ)

0 −i

i 0

+ cos(θ)

1 0

0 −1


=

 0 sin(θ) cos(ϕ)

sin(θ) cos(ϕ) 0

+

 0 −i sin(θ) sin(ϕ)

i sin(θ) sin(ϕ) 0

+

cos(θ) 0

0 − cos(θ)


=

 cos(θ) sin(θ) cos(ϕ)− i sin(θ) sin(ϕ)

sin(θ) cos(ϕ) + i sin(θ) sin(ϕ) − cos(ϕ)


=

 cos(θ) e−iϕ sin(θ)

eiϕ sin(θ) − cos(θ)


(20)

We want to answer the question - ‘what is the state that will always be measured to be spin-

up in the n̂ direction.’ We know that σx |↑x⟩ = +1 |↑x⟩ (|↑x⟩ is an eigenvector (with eigenvalue
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+1) of σx) and σx |↓x⟩ = −1 |↓x⟩ (|↓x⟩ is an eigenvector (with eigenvalue -1) of σx); |↑x⟩ =

 1√
2

1√
2

,

|↓x⟩ =

 1√
2

−1√
2

. Thus, the answer is to find that state which is an eigenvector of n̂ · σ⃗ with eigenvalue

+1. And we already know what that state is (|↑n⟩)! Let us check!

(n̂ · σ⃗)(|↑n⟩) =

 cos(θ) e−iϕ sin(θ)

eiϕ sin(θ) − cos(θ)


 cos( θ2)

eiϕ sin( θ2)


=

cos(θ) cos( θ2) + e−iϕ sin(θ)eiϕ sin( θ2)

eiϕ sin(θ) cos( θ2)− cos(θ)eiϕ sin( θ2)


=

 cos(θ − θ
2)

eiϕ sin(θ − θ
2)


=

 cos( θ2)

eiϕ sin( θ2)


= +1 |↑n⟩

(21)

The same follows for |↓n⟩ =

 sin( θ2)

−eiϕ cos( θ2)

 i.e. (n̂ · σ⃗)(|↓n⟩) = −1 |↓n⟩.

Note that ⟨↑n | ↑n⟩ = 1, ⟨↓n | ↓n⟩ = 1, and ⟨↑n | ↓n⟩ = 0.

Some sanity checks using for example n̂ = (1, 0, 0), θ = π
2 , and ϕ = 0 can be used to verify the

above results. For θ = θ − π and ϕ = ϕ+ π we find that |↑−n⟩ = |↓n⟩.

The expression for the Bloch vector can similarly be verified for:

n⃗x = ⟨ψ|σx|ψ⟩ =
(
cos( θ2) eiϕ sin( θ2)

)0 1

1 0


 cos( θ2)

eiϕ sin( θ2)

 = sin(θ) cos(ϕ).

The same follows for n⃗y and n⃗z.

Let us conclude with the expression for the probabilities:

Consider the spin in z direction. Then,
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⟨↑z| |↑n⟩ =
(
1 0

) cos( θ2)

eiϕ sin( θ2)

 = cos( θ2)

∴ the probability of spin-up in z direction is | ⟨↑z| |↑n⟩ |2 = cos2( θ2) =
1
2(1 + cos(θ)).

Thus, for any two unit vectors n̂ and m̂ with an angle θ between them, we have

P = | ⟨↑m| |↑n⟩ |2 =
1

2
(1 + n̂ · m̂) (22)

The probability is 1 for n̂ · m̂ = 1, 1
2 for n̂ · m̂ = 0, and 0 for n̂ · m̂ = −1.

Thus the state of a qubit can be represented in terms of two parameters θ and ϕ as follows:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ (23)

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.

We know that the state of a qubit should be |ψ⟩ = α |0⟩+β |1⟩, where (α, β) ∈ C and |α|2+|β|2 = 1.

Representing a complex number in its polar form, we have that γ = reiϕ. Thus,

|ψ⟩ = r0e
iϕ0 |0⟩+ r1e

iϕ1 |1⟩ (24)

where (r0, r1) are non-negative real numbers.

|ψ⟩ = eiϕ0 [r0 |0⟩+ r1e
i(ϕ1−ϕ0) |1⟩] (25)

and we know from property 2 that eiϕ0 has no physical relevance.

Hence, to describe the quantum state |ψ⟩ we have the parameter ϕ = ϕ1 − ϕ0 (relative phase

difference) and by the normalization condition, r20 + r21 = 1. So we could choose r0 = cos( θ2) and

r1 = sin( θ2) for some angle θ. Thus, we have the same representation as equation 23 for |ψ⟩.
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3 Summary

In this paper we introduced ourselves to the density operator, we looked at the various properties

of a density operator, and saw the representation of a qubit on the Bloch sphere.
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