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1 INTRODUCTION

The following is meant as a brief overview of specific topics relating to angular momentum
in the context of quantum mechanics, inclusing the Clebsh-Gordan decomposition and the
Wigner-Eckhart theorem. Most of what follows here is based off chapter IV.3 of Anthony Zee’s
book Group Theory in a Nutshell for Physicists.

2 QUANTIZATION OF ANGULAR MOMENTUM

In 1913, in order the solve the outstanding issues with the planetary atomic model, Niels Bohr
introducted the assumption that the angular momentum L is quantized by multiples of ~.
Bohr introduced the assumption that the lowest angular momentum state for the hydrogen
atom has L = mvr = ~, which allowed for a definite value to be assigned to the Bohr radius
and the minimum energy state of the hydrogen atom. Recall that SO(3) is a Lie algebra with a
set of generators~LLie. The angular momentum operators~L are given by ~~LLie. This means that
the operators satisfy the following relation:

[Li ,L j ] = i~εi j k Lk (2.1)

where εi j k is the Levi-Civita symbol. If we leave L constant and take ~ down to zero, we expect
that this should reduce to the behavior of a classical system. Indeed, as we see, the commu-
tators of the~L operators drop to 0, they approach the behavior of a classically commuting
variable. By extension, as~L2 |l ,m〉 = ~l (l +1) |l ,m〉 and Lz |l ,m〉 = ~mketl ,m, it follows that
if L remains fixed and ~→ 0, l ,m →∞. This reproduces what should be a familiar quantum
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mechanical fact: that quantum systems approach classical ones as its quantum numbers go to
infinity.

3 ADDITION OF ANGULAR MOMENTUM

Consider a system consisting of two particles in a spherically symmetric potential. Call these
particles “prime" and “un-prime", with states |l ,m〉 and

∣∣l ′,m′〉, respectively. If the two parti-
cles have no interaction, then the Hamiltonian’s eigenstates will simply be a direct product
of the individual particles states, i.e. |l ,m〉⊗ ∣∣l ′,m′〉. If the particles do interact on the other
hand, there will be a reaction term HI dependent on the distance between the particles.

Suppose for example, that l = 2, l ′ = 1. Then the un-prime wavefunction will be a product
of a purely radial function and a function of φ and θ which transforms like the traceless and
symmetric tensor Si j . Si j has five components, each of which is a function of φ and θ. These
correspond to the five possible values for m, −2,−1,0,1, and 2. Similarly, the wavefunction
for the prime particle will be a product of a radial function and an angular function which
transforms like a vector T k . This vector has three componenets, which correspond to the three
possble values for m: −1, 0, and 1. Recall that in general we have

l ⊗ l ′ = (l + l ′)⊕ (l + l ′−1)⊕ ...⊕ (|l − l ′|+1)⊕ (|l − l ′|) (3.1)

(equation 4.2.11 in Lee’s book). So in this particular case this relation is:

2⊗1 = 3⊕2⊕1. (3.2)

So our original 15 states are in fact three classes of degenerate states, with degeneracies 7, 5,
and 3.

4 MULTIPLICATION OF LADDERS

By multiplying tensors together, we can obtain larger irreducible representations, which
is essentially what we did above in Eq. 3.1. We do something similar with Lie algebras,
multiplying kets to obtain larger representations. Let j and j ′ be irreduciple representations
for SO(3). We then have two collections of kets:

{
∣∣ j ,m

〉 | m ∈ {− j ,− j +1... j −1, j }}

and

{
∣∣ j ′,m′〉 | m′ ∈ {− j ′,− j ′+1... j ′−1, j ′}}.

When acted on by the generators Ji , the prime kets will transform to linear combinations
of themselves, and similarly the unprime ones will transform to linear combinations of the
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unprime kets.

The question is now what are the product kets
∣∣ j ,m

〉⊗ ∣∣ j ′,m′〉? We know there are (2 j +
1)(2 j ′ + 1) such states, which the generators Ji send to linear combinations, producing a
(2 j +1)(2 j ′+1)-dimensional representation of SO(3), which will be reducible in the sense
that their representing matrices will be block diagonalizable. This approach is effectively
equivalent to the approach using tensors. There is a bijective correspondence between the
kets

∣∣ j ,m
〉

and the components of the tensor T i1...i j , so the act of multiplying tensors and
multiplying kets are in this context effectively equivalent.
Consider an infinitessimal rotation around the z-axis given by R ' I + iθJz . Clearly both

∣∣ j ,m
〉

and
∣∣ j ′,m′〉 will also rotate in reaction to this. Observe:∣∣ j ,m

〉⊗ ∣∣ j ′,m′〉→ R
∣∣ j ,m

〉⊗R
∣∣ j ′,m′〉

' (I + iθJz )
∣∣ j ,m

〉⊗ (I + iθJz )
∣∣ j ′,m′〉

= (I + iθm)
∣∣ j ,m

〉⊗ (I + iθm)
∣∣ j ′,m′〉

' (1+ iθ(m +m′))
(∣∣ j ,m

〉⊗ ∣∣ j ′,m′〉)+O(θ2)

Equivalently, this means that

Jz
(∣∣ j ,m

〉⊗ ∣∣ j ′,m′〉)= ((
Jz

∣∣ j ,m
〉)⊗ ∣∣ j ′,m′〉)+ (∣∣ j ,m

〉⊗ (
Jz

∣∣ j ′,m′〉))
= (m +m′)

(∣∣ j ,m
〉⊗ ∣∣ j ′,m′〉)

Therefore we can see Jz acts on
∣∣ j ,m

〉
and

∣∣ j ′,m′〉 separately via a sort of "product rule" form,
and that th eigenvalues of the two states simply add directly.

(To reduce notation,
∣∣ j ,m

〉⊗ ∣∣ j ′,m′〉 will be written as
∣∣ j , j ′,m,m′〉 from here on)

5 THE CLEBSH-GORDAN DECOMPOSITION

First, an example. Consider j = 1
2 , j ′ = 1

2 . There will be (2 j+1)(2 j ′+1) = 4 states, corresponding
to m,m′ =±1

2 (from here on we will write
∣∣ j , j ′,m,m′〉= ∣∣m,m′〉, as j and j ′ are fixed for the

time being.) Our four states are as follows:

∣∣∣∣1

2
,

1

2

〉
∣∣∣∣−1

2
,

1

2

〉
∣∣∣∣1

2
,−1

2

〉
∣∣∣∣−1

2
,−1

2

〉
The representation produced by these states can be decomposed into a smaller number of

irreducible states indexed by a number J. These irreducible representations will be written as
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|J , M〉 for M =−J ...J . Our basic approach will be to take the highest eigenvalue state
∣∣1

2 , 1
2

〉
and

repeatedly apply the J− operator. This state has eigenvalue 1
2 + 1

2 = 1, so we have∣∣∣∣1

2
,

1

2

〉
= |1,1〉 (5.1)

Where the ket on the left is
∣∣m,m′〉 and the ket on the right is |J , M〉. So we apply J− on both

sides. First, we recall the following relations:

J−
∣∣∣∣1

2

〉
=

∣∣∣∣−1

2

〉
, J− |1〉 =

p
2 |0〉 , J− |0〉 =

p
2 |−1〉

Using these, and the action of Jz on product kets found in the previous section, we conclude
that

J−
∣∣∣∣1

2
,

1

2

〉
=

∣∣∣∣1

2
,

1

2

〉
+

∣∣∣∣1

2
,−1

2

〉
Therefore

|1,0〉 = 1p
2

(∣∣∣∣−1

2
,

1

2

〉
+

∣∣∣∣1

2
,−1

2

〉)
(5.2)

Via another application of the J− operator we get |1,−1〉 = ∣∣−1
2 ,−1

2

〉
. The last remaining state

is 1p
2

(∣∣−1
2 , 1

2

〉− ∣∣1
2 ,−1

2

〉)
. This state we can see has eigenvalue 0, so it corresponds to |0,0〉. To

summarize:

|J , M〉 = ∣∣m,m′〉
|1,1〉 =

∣∣∣∣1

2
,

1

2

〉
|1,0〉 = 1p

2

(∣∣∣∣−1

2
,

1

2

〉
+

∣∣∣∣1

2
,−1

2

〉)
|0,1〉 = 1p

2

(∣∣∣∣−1

2
,

1

2

〉
−

∣∣∣∣1

2
,−1

2

〉)
|1,−1〉 =

∣∣∣∣−1

2
,−1

2

〉
In other words,

1

2
⊗ 1

2
= 1⊕0

This process that we have just worked through is the Clebsh-Gordan decomposition. The
coefficients, such as 1p

2
, are called the Clebsh-Gordan coefficients. The decomposition is

found from:

|J , M〉 =
j∑

m=− j

j ′∑
m′=− j ′

∣∣ j , j ′,m,m′〉〈
j , j ′,m,m′∣∣J , M

〉
(5.3)
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Which we can view as being essentially a rearrangement of the relation

j∑
m=− j

j ′∑
m′=− j ′

∣∣ j , j ′,m,m′〉〈
j , j ′,m,m′∣∣= I ,

which should be familiar.

6 WIGNER-ECKHART THEOREM

Early atomic spectroscopy faced a number of challenged that puzzled physicists of the time.
Notably, many transition lines which were expected to appear did not, and the reason why they
did not appear was not yet understood. Suppose we have a perturbation, which may cause
a transition from some initial state |i 〉 to a final state

∣∣ f
〉

. The probability of this transition
occurring will in general be expressed as

〈
f
∣∣O |i 〉, where O is some operator. In the context of

atomic spectroscopy, |i 〉 and
∣∣ f

〉
will transform like members of an irreducible representation

for SO(3), where we have |i 〉 = ∣∣α, j ,m
〉

and
∣∣ f

〉= ∣∣α′, j ′,m′〉. Here α and α′ denote quantum
numbers which are not directly relevant to the structure of SO(3), such as principal quantum
number and so on. O will also transform like an element of an irreducible representation.
Denote by O J M the operator corresponding to the state |J , M〉.
The Wigner-Eckhart theorem states that〈

α′, j ′,m′∣∣O J M
∣∣α, j ,m

〉= (〈
j ′,m′∣∣(|J M〉⊗ ∣∣ j ,m

〉))〈
α′, j ′

∣∣ |O J |
∣∣α, j

〉
= 〈

j ′,m′∣∣J , j , M ,m
〉〈
α′, j ′

∣∣ |O J |
∣∣α, j

〉
Which means we can reduce the initial probability amplitude into two factors,

〈
j ′,m′∣∣J , j , M ,m

〉
and

〈
α′, j ′

∣∣ |O J |
∣∣α, j

〉
. The latter of these two is called the reduced matrix element of O . Eval-

uation of this term must be done on the basis of physics, beginning from the SchrÃűdinger
equation and computing integrals directly. This quantity will depend on α,α′,m,m′, J , j , and
j ′, but not on m or m′.
Note that the other term,

〈
j ′,m′∣∣J , j , M ,m

〉
is a Clebsch-Gordan coefficient. This is logical,

as O J M
∣∣α, j ,m

〉
transforms in the same way as |J , M〉⊗ ∣∣ j ,m

〉 = ∣∣J , j , M ,m
〉

. Note also that〈
j ′,m

∣∣J , j , M ,m
〉 = 0 unless we have j ′ ∈ {| j − J |, | j − J |+1, ... j + J −1, j + J } and m′ = M +m.

Alternatively, we can rewrite these conditions in terms of ∆ j = j ′− j and ∆m = m′−m:

|∆ j | = | j ′− j | ≤ J

∆m = m′−m = M ≤ J

The intensity of an observed emission line, i.e. the probability of the emission occurring,
is given by the absolute square of

〈
α′, j ′,m′∣∣O J M

∣∣α, j ,m
〉

, which means the intensity of the
various lines is determined by group relations. In addition, the conditions above also put
strict limits on which lines that it is possible to observe. This gives rise to the now well-
known selection rules which puzzled early 20th century physicists. For (α, j ), (α′, j ′) a pair of
initial and final states, respectively, we expect, for a given transition type fixed by J , a total of
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(2 j +1)(2 j ′+1) possible transitions. Many of these do not occur because of the selection rules
listed above, while the frequency under which the remaining ones occur is fixed entirely by
group theory, as the reduced matrix element

〈
α′, j ′

∣∣ |O J |
∣∣α, j

〉
cancels out completely.
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