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Abstract

This paper is based on my lecture for the Kapitza Society. In it, we discuss gravitational
waves, with a focus on linearized gravitational waves. We address the mathematical repre-
sentation of linearized gravitational waves, discuss their detection, and construct their most
general form. We conclude with a discussion of modern efforts to detect them.

1 Introduction

Einstein’s Theory of General Relativity explains that mass produces a curvature of spacetime.
This has been discussed at length in this course through the study of the geometries that arise due
to different astronomical phenomena. General Relativity also predicts that ripples of spacetime,
that propagate at the speed of light, are generated by masses in non-spherical, nonuniform
motion. These ripples are called gravitational waves, and have since been detected on Earth. We
will discuss linearized gravitational waves: weak gravitational waves propagating in a nearly flat
spacetime, entirely devoid of matter.

2 Linearized Gravitational Waves

The most simple example of a gravitational wave is a plane wave. Such waves propagate in
one direction, known as longitudinal, and independent of the other two perpendicular directions,
which are known as transverse. The wave is the same in both transverse directions, hence the
name plane wave.

As we already know, in the (t, x, y, z) coordinates of an inertial frame, the metric of a flat
spacetime is gαβ = ηαβ , with ηαβ = diag(−1, 1, 1, 1). As such, for a metric that is close to flat,
we can write:

gαβ = ηαβ + hαβ(x) (1)

Where the amplitudes hαβ(x) represent small perturbations to this flat spacetime metric, and
are accordingly called metric perturbations. For a general plane gravitational wave propagating
in the z-direction, we have:

hαβ(x) =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 f(t− z)
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Where f(t− z) is any function of t− z where |f(t− z)| � 1. With such a perturbation, the line
element for the spacetime is given by:

ds2 = −dt2 + [1 + f(t− z)]dx2 + [1− f(t− z)]dy2 + dz2 (2)

The geometry in (2) represents a ripple of curvature propagating in the positive z-direction with
speed 1 (the speed of light). The amplitude and shape of the ripple, as one would expect, are
determined by f(t− z). As both the various hαβ and f(t− z) are dimensionless, the amplitude
of a gravitational wave is also dimensionless.

For example, if one were to choose f(t− z) = a exp[−(t−z)
2

σ2 ], the ripple would be a Gaussian
wave packet with width σ and height a that would propagate along the z-axis at the speed of
light without changing shape.

It is, however, important to note that the metric in (2) does not solve the Einstein Equation
exactly. It does, however solve the equation when it is expanded to the first order (linearized)
in the amplitude of the wave. Linearized waves are especially useful for approximations of
gravitational waves with small amplitudes, and also can be added to one another to produce
other linearized gravitational waves that solve Einstein’s Equation to the same degree of accuracy,
something that cannot be done with solutions of the full equation.

An important result that we did not get to cover in this course is that any linearized gravi-
tational wave can be represented as the sum of one waves of the form in (2) and another wave
of a similar form with different polarizations.

3 Detection of Gravitational Waves

When we have discussed other spacetimes, we have used the motion of test bodies to discuss the
curvature of spacetime, but talking about the motion of a single test body will not be sufficient
in the discussion of gravitational waves. For example, if we had our test body that is at rest
with respect to some frame, it will remain at rest there whether a gravitational wave is present
or not. As such, as we move forward, we will work with the relative motion of two or more test
bodies when discussing gravitational waves.

We will now discuss how two test bodies would be affected by the gravitational wave packed
in (2). Take two test bodies A and B, at (0, 0, 0) and (xB , yB , zB) respectively. The initial
four-velocities are given by:

uα(A) = uα(B) = (1,~0) (3)

Before the gravitational wave passes, the spacetime is flat and we have:

xi(A)(τ) = (0, 0, 0);xi(B)(τ) = (xB , yB , zB) (4)

The geodesic equation must be solved for each particle using the metric (2) in order to predict
the motion of the particles after the wave packet affects them. Because the amplitude of the wave
is small, we will solve for first order corrections δxi(A)(τ) and δxi(B)(τ). The geodesic equation

for the spacial coordinates, xi(τ) of either particle is given by:

d2xi

dτ2
= −Γiαβ

dxα

dτ

dxβ

dτ
(5)
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These equations simplify due to only needing to calculate first order changes. Γiαβ vanishes in
the unperturbed, flat spacetime, so:

d2δxi

dτ2
= −δΓiαβuαuβ = −δΓitt (6)

Where δΓiαβ are the first order changes in the Γ’s and the uα are the unperturbed four-velocities

given by (3). The Christoffel symbol Γitt vanishes for our metric (2), so δΓitt does as well. Thus,
we have:

d2δxi

dτ2
= 0 (7)

Initially we have that δxi = 0 and that the test masses are at rest, so dδxi

dτ = 0 for all τ and both
test masses:

δxi(A) = δxi(B) = 0 (8)

The result of this is that there is no change in the coordinate positions of either of the test
particles as the wave passes (to the first order in amplitude of the wave). The distance between
the masses, however, does change with time, as will be demonstrated by the example that follows.

3.1 Example: The Change in Distance Between Two Test Masses

We will consider a wave of the form (2) traveling in the z-direction and two test masses, one at
the origin, and one at position (L∗, 0, 0) in order to calculate the change δL(t) in the distance
between them. The distance between the test masses will be L∗ in the unperturbed spacetime.
In the spacetime given in (2), the distance between them (as measured along the x-axis, L(t)
and δL(t) are given by: ∫ L∗

0

dx[1 + hxx(t, 0)]1/2 ≈ L∗[1 +
1

2
hxx(t, 0)] (9)

δL(t)

L∗
=

1

2
hxx(t, 0) (10)

As such, the distance between the test masses changes with time according to the variation of
the wave. If the wave were to have a definite frequency ω, amplitude a, and phase δ so that
f(t− z) = a sin(ωt+ δ), one would find that:

δL(t)

L∗
=

1

2
a sin(ωt+ δ) (11)

3



Figure 1: The motion of test particles in the gravitational wave spacetime. The two test particles
are initially at x = 0 and x = L∗. As the wave passes, the coordinate distance does not change,
but the distance between them, L(t), does in accordance with the oscillations of the wave.

3.2 Generalization of Results

The work in that example can be generalized to the case where the first test particle is at the
origin and the second one is at an arbitrary point in the plane transverse to the direction of the
wave’s propagation. Let the second test mass be a distance L∗ from the origin along the direction
of a unit vector ~n in the plane z = 0. The ratio L

L∗
is called the fractional strain produced by

the gravitational wave, and it and the distance, L(t), between the two test charges (as calculated
along the path that is a straight line in the unperturbed spacetime), will then be given by:

δL(t)

L∗
=

1

2
hij(t, 0)ninj (12)

Despite the fact that the path we calculated the path along was straight in the flat spacetime
and the fact that the coordinate distance was unchanged by the gravitational wave, the path will
not be a geodesic in the curved spacetime of the wave. For the sake of laser interferometry, it
is more viable to calculate the separation of particles along the path of a light ray between the
test masses. In flat spacetime, light rays follow straight line paths, as they do in any spacetime,
but straight paths are paths of extremal distance in flat spacetime, from which there are only
second order changes (with regard to distance), so (12) also gives the change in distance along
the path of a light ray (first order in amplitude).

4 Gravitational Wave Polarization

The gravitational wave metric (2) causes no change to the distance between masses on the z-axis
(longitudinal direction). The perturbation hzz also vanishes from the generalized version of (9).
This means that only transverse separations of test particles change with time as the wave packet
passes. As such, gravitational waves are transverse.
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We will now discuss the effects of a passing gravitational wave on test masses arranged in a circle
in the x− y plane at z = 0 with another mass at the center. We will have a gravitational wave
of the form in (2) with f(t− z) = a sin(ω(t− z)). As we now know, the coordinate positions of
these test charges will be unchanged, but the distance between each test mass and the one at
the center will change with time. To calculate these distances, we will introduce new coordinates
(X,Y ) for the x− y plane at z = 0:

X = (1 +
1

2
a sin(ωt))x;Y = (1 +

1

2
a sin(ωt))y (13)

This clever choice of coordinates has the line element dS2 = dX2 + dY 2, which is the same as
that of a flat Euclidean plane (ignoring corrections of order a2 that will be negligible for waves
with small amplitude). The distances between the test masses in the x − y plane can now be
calculated from their X(t) and Y (t) components (to the first order with respect to the amplitude
of the wave).

Figure 2: Shows the time progression of a ring of test masses in the plane transverse to the
propagation of the wave in (13). The grid lines are a (1 amplitude) apart, and ω is the frequency
from (13. The X and Y directions are expanding and contracting out of phase with one another
(π4 radians apart).

As was mentioned before, the metric in (2) is not the most general one, but is instead only
accounting for a single polarization out of the two possible independent ones that we can have.
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To find another polarization, we can rotate the x and y axes by some angle θ. We can choose
an angle (we will use 45o and find the relation between (x, y) and our new, rotated coordinates
(x′, y′):

x =
1√
2

(x′ + y′); y =
1√
2

(x′ − y′) (14)

By substituting these into (2), we can see how our metric changes. The flat spacetime, ηαβ ,
remains unchanged by rotations, and our new coordinates are not physically different from the
old ones, so we will have a new solution to our linearized Einstein equation. These facts give:

hx′x′ = 0;hx′y′ = hy′x′ = hxx = −hyy;hy′y′ = 0 (15)

hαβ(x) =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 f(t− z) (16)

It is easily see that this solution and our original solution will be linearly independent. The be-
havior of test particles will also be the same, but rotated by 45o. Gravitational waves of the form
in (2) are usually denoted to have a + polarization, while those of the form in (16) are denoted
to have a x polarization. We can take a linear combination of two arbitrary gravitational waves
of these forms, and thus obtain the general form for a linearized gravitational wave propagating
in the z-direction:

hαβ(x) =


0 0 0 0
0 f+(t− z) fx(t− z) 0
0 fx(t− z) −f+(t− z) 0
0 0 0 0

 (17)

5 Gravitational Wave Interferometers

As was stated in the Introduction, gravitational waves have been detected on earth. We will
discuss how similar detectors to the ones that were used function.

5.1 Theory

The detectors that are used at the The Laser Interferometer Gravitational-Wave Observatory
(LIGO), the physics experiment/observatory that detected gravitational waves, are, as the name
suggests, laser interferometers. Specifically, LIGO makes use of Michaelson Interferometers

Laser interferometers utilize the constructive and destructive interference of beams of light to
measure changes in distance to a high degree of precision. In Michaelson Interferometers, shown
in Figure (3) below, a laser emits a beam of light of a single wavelength that then enters a beam
splitter where it is split into two beams that then travel down two perpendicular paths. At the
end of each path, there is a mirror that reflects the beams back toward the beam splitter. Before
reaching the beam splitter, however, there is a partially reflective mirror. The photons then are
either reflected back toward the mirrors or pass through the beam splitter, where some would
then go to the detector where these two beams (now not necessarily in phase) will interfere. By
knowing the initial lengths of the paths from the beam splitter to the two mirrors (L(x) and
L(y)), the wavelength of light from the beams (λ, and the interference pattern that is observed,
one can calculate the difference between the lengths of the two arms of the interferometer:
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∆L ≡ L(x) − L(y) = nλ; (n = 0, 1, 2, 3, ....); for constructive interference (18)

∆L ≡ L(x) − L(y) = (n+
1

2
)λ; (n = 0, 1, 2, 3, ....); for destructive interference (19)

Figure 3: Shows the layout of a typical Michaelson Interferometer.

For the purposes of measuring gravitational waves, the beam splitter and mirrors will be attached
to test masses that are hung and allowed to swing freely in horizontal directions. This setup
allows us to measure the change in distance between the beam splitter test mass and each of
the mirror masses in terms of half wavelengths of the light we are using. The partially reflective
mirrors (when included) act to extend the length of the interferometer’s arms by also being
attached to hanging test masses, but the general principle is the same.
The difference in arm lengths, ∆L ≡ L(x) − L(y) , will change with regard to time as a grav-
itational wave acts on the system. As ∆L changes, the interference will go between being
constructive and destructive, and the plot of the intensity of the light hitting the detector will
also vary with regard to time. One can think of the beam splitter mass as the central mass in
each of the pictures in Figure (2), and each of the mirrors as one of the other masses in the same
picture. If we assume that the gravitational wave is of the form in (2) with a definite frequency
(ω), as the wave passes, L(x) and L(y) will expand and contract out of phase with each other.
Moreover, if we assume that the interferometer arms are oriented along the x- and y-axes, we
get that:

δL(x)

L(x)
= +

1

2
a sin(ωt);

δL(y)

L(y)
= −1

2
a sin(ωt) (20)

The amplitude and frequency can be determined by looking at the interference pattern that
would be picked up by the detector. For a gravitational wave with a given amplitude, longer
interferometer arms will allow for a more sensitive detector. It is worth noting that actual
detectors, like LIGO, are more sophisticated than these Michaelson interferometers, but they are
based on them and operate on the same ideas.
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5.2 Detection

The Laser Interferometer Gravitational-Wave Observatory was the first observatory to detect
gravitational waves. On September 14, 2015, less than two days after they turned on the detectors
after being upgraded to have a strain ( δLL ) sensitivity of of 10−23 [2], the first ever detection of
gravitational waves on Earth occurred. The observatory has interferometer arms 4 km in length,
and the ability to pick up waves with frequencies ranging from 10-10kHz. The next observation
run of LIGO is scheduled for February 2019.
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