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Abstract
Previously, we calculated the effect of scalar perturbations, Φ and Ψ, of the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric on Einstein’s equations. We found that Φ and Ψ
are coupled. In this paper, I perturb the FLRW metric with a tensor perturbation and calculate the Ricci
Tensor and Ricci Scalar to first-order. We find that the tensor perturbations are decoupled from the scalar
perturbations and that tensor perturbations do not affect the Ricci scalar at first-order. This paper is
adapted from Scott Dodelson’s book Modern Cosmology.

1. Introduction
Previously, we derived the Boltzmann equations for particles in the early universe. Then

we perturbed the metric with scalar perturbation functions Φ and Ψ and calculated the first-order
Einstein equations. We found that Φ and Ψ are coupled i.e. we couldn’t determine Φ without also
determining Ψ. We first remember that Φ and Ψ are scalars and thus invariant under spatial
coordinate transformations. Physically, this is because Φ and Ψ arise from perturbations in the
mass-energy density of the universe. We determine Φ and Ψ by observing the large-scale
structures of the universe and “rewind the clock”. However we find that most models of
cosmological structure formation require tensor perturbations to the metric which produce
large-scale variations in the CMB among other effects.

By the Decomposition Theorem we find that scalar perturbations are decoupled from
tensor perturbations so we can use all of our work from the previous sections without having to
start over. Without loss of generality, we can write the perturbed metric as

(1)

Thus, tensor perturbations are described by two (small) functions h+ and h⨯. We choose a
coordinate system here with the z-axis to be the direction of the wave vector k. h+ and h⨯ are
components of the tensor
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(2)

Note that ℍμν is symmetric, traceless, and divergenceless. Since we are in the Fourier
domain, divergenceless means kiℍij = kjℍij = 0. What we have done so far is the only thought we
have to put into this process. We now compute the Ricci Tensor and the Ricci Scalar by plugging
and chugging and throwing out terms of O(2) or greater.

2. Christoffel Symbols for Tensor Perturbations
We start with Γ0

αβ. Since Christoffel symbols are merely derivatives of the metric it is
easy to see that

(3)

since the metric is constant for those indices. All of the Christoffel symbols with two
lower indices are

(4)

We have used the notation where a comma followed by an index in the subscript indicates
a partial derivative with respect to that index. We can write the spatial components of the metric
as

(5)

Thus

(6)

Note that H represents the Hubble rate and note the perturbation tensor. Substituting (6)
into (4) gives

(7)
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Now we only need Γi
0j and Γi

jk. We find the first one to be

(8)

But we note that we only want first-order terms. In theory we could wait until the end of
the calculation to discard higher order terms, but we can make the algebra much easier if we just
get rid of them now. Note that gikgjk = δi

j. Neglecting first-order terms we note that gjk = δjk/a2.
Thus

(9)

A little algebra will show

(10)

3. Ricci Tensor and Ricci Scalar for Tensor Perturbations
Now that we have the Christoffel symbols it is merely a matter of algebra to construct the

Ricci Tensor. We start with the time-time component

(11)

This is a formidable equation but we have already calculated much of it. Since the
Christoffel symbols with time-time lower indices vanish, the first and third terms in (11) also
vanish. Additionally, the indices in the second and fourth terms in (11) must be spatial. Thus we
are really calculating

(12)

Thus all we need to do is to plug in (9) and take its time derivative. Thus, we get

(13)

Expanding the parentheses, omitting higher order terms, and noting that the perturbation
tensor is traceless, (13) reduces to
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(14)

A much more manageable equation. We have seen this equation before. We found it when
we calculated the Ricci Tensor for scalar perturbations and even before when we analyzed the
unperturbed metric. Thus, at first-order, tensor perturbations do not affect the time-time
component of the Ricci Tensor.

Now we have one last laborious task, calculating the spatial components of the Ricci
Tensor

(15)

It turns out to be convenient to consider the first two terms together. If we separate the
time and space components, we get

(16)

Note that the second term on the left hand side is zero when α = 0. On the right hand side,
note that Γ0

ij = gij,0/2. Thus the first term can be written as gij,00/2. From (10) we can see that the
last term vanishes. Thus, we end up with

(17)

We now can take advantage of coordinate choice and note that k lies in the z-direction.
This means that anywhere we see an index on k, we replace it with 3. This kills the first two
terms in the bracket leaving

(18)

This is much more manageable but remember that it is only two terms in the Ricci tensor,
we still have two more to calculate. We expand out the third term in (15)

(19)

In the second term the Christoffel symbols are first-order so their product is second order
and is thus neglected. For the first Christoffel symbol in the first term we look at (9), set i = j,
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and sum. The first term in (9) becomes 3H and the second term is first-order so its product with
the other part of the term in (19) is neglected. Using (7) we get

(20)

Using similar methods, we compute the final term in (15)

(21)

Putting it all together we get

(22)

We are not quite done yet. We must substitute in the time derivatives of the metric. First
we evaluate the second time derivative using (6)

(23)

We then substitute (23) into (22) and we get

(24)

It is easy to compute the Ricci Scalar

(25)

Looking at the first-order part, we can ignore the first term which is zero-order. In the
second term, contracting the metric gives zero-order terms for the terms in (24) proportional to
the metric. Since all the other terms in (24) are first-order in the tensor perturbation, we take the
zero-order part of the metric, gjk = δjk/a2. This takes the trace of the tensor perturbation which is
traceless. Thus, to first-order, tensor perturbations do not affect the Ricci Scalar.

4. Summary
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With the Ricci Tensor and the Ricci Scalar, it is relatively easy to calculate the Einstein
Tensor. You can then show that tensor perturbations give rise to gravitational waves. You can
also see that the tensor perturbations are decoupled from the scalar perturbations.

This derivation required a lot of menial algebra and neglecting higher order terms. This is
useful the first time you see such a problem to learn the techniques of the computation, but
becomes tedious math if you want to see higher order terms or choose a new metric. Since this
section was mostly a mathematics exercise with almost no physics, it makes sense to enlist the
help of computers to do the tedious algebra of calculating the Christoffel Symbols, Ricci Tensor
and Scalar, and the Einstein Tensor. I am currently working on doing symbolically this with
Wolfram Mathematica. Hopefully, users will be able to input any metric and have Einstein’s
equations pop out. This would allow users to focus on the physics and leave the tedious algebra
to the computers.
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