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1 Introduction

At this point in the course, we had already shown that SO(4) is isomorphic to the group SU(2) ⊗ SU(2).

Therefore, one can define two subgroups of SO(4) that are isomorphic to SU(2). We can choose a repre-

sentation of SO(4) that makes is isomorphism to SU(2) clear. The two representations of SU(2) that are

contained in SO(4) are called the spinor representations of SO(4). We build off of a previous lecture to

define these spinor representations more generally for SO(2n).

2 Overview of Previous Definitions

We have determined that the generators of SO(2n) can be formed using combinations of 2n total γ matrices.

These γ matrices are defined as follows

γ2k−1 = 1⊗ 1⊗ · · · ⊗ 1⊗ σ1 ⊗ σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 (1)

γ2k = 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
Occurs k−1 times

⊗ σ2 ⊗ σ3 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
Occurs n−k times

, (2)

where k = 1, · · · , n. The σi are the Pauli matrices, and 1 is the 2 × 2 identity matrix. The generators of

SO(2n) are defined as

τjk = − i
2

[γj , γk] =

−iγjγk, j 6= k

0, j = k.
(3)

Also in a previous section we defined an additional matrix γF as

γF = (−i)nγ1γ2 · · · γ2n (4)

Since these τij and γi formed by direct products, we can also write the states which these matrices act on

as |ε1ε2 · · · εn〉. Then when we apply γF , we get

γF |ε1ε2 · · · εn〉 =

 n∏
j=1

εj

 |ε1ε2 · · · εn〉. (5)

Note that
∏n
j=1 εj = 1 if there are an even number of negative εj and −1 if there are an odd number of

negative εj . The right-handed spinor S+ consists of all of the states in the former situation, whereas the

left-handed spinor S− is composed of the latter.
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3 Examples

3.1 SO(2)

We have already defined the γ matrices for SO(2) as

γ1 = σ1, γ2 = σ2 =⇒ γF = −iγ1γ2 = σ3 (6)

SO(2) has only one generator, which we can write as

τ12 = −iγ1γ2 = −iσ1σ2 = σ3 (7)

We note that the states for this system correspond to |+〉 and |−〉. The right and left handed spinor

representations must then be eiθ and e−iθ.

3.2 SO(4)

We now work through the relevant terms for SO(4) using the formalism in section 2. We can write the γi as

γ1 = σ1 ⊗ σ3, γ2 = σ2 ⊗ σ3, γ3 = 1⊗ σ1, γ4 = 1⊗ σ2
γF = γ1γ2γ3γ3 = σ3 ⊗ σ3

(8)

We can then calculate each of the generators of SO(4)

τ12 = −iγ1γ2 = −i (σ2 ⊗ σ3) = σ3 ⊗ 1,

τ31 = −σ1 ⊗ σ2, τ23 = σ2 ⊗ σ2
τ14 = −σ1 ⊗ σ1, τ24 = −σ2 ⊗ σ1
τ34 = 1⊗ σ3

(9)

One can verify that these satisfy the commutation relations for SO(4). Here we calculate [τ12, τ23] as an

example.

[τ12, τ23] = [σ3 ⊗ 1, σ2 ⊗ σ2] = [σ3, σ2]⊗ σ2 = −2iσ1 ⊗ σ2 = 2iτ31 (10)

To determine how we can form the spinor representations of SO(4), we determine how these generators act

on the states associated with this algebra. We first calculate the affect of τ!2 on |++〉 and |−−〉 explicitly.

τ12 |++〉 = σ3 |+〉 ⊗ 1 |+〉 = |++〉

τ12 |−−〉 = σ3 |−〉 ⊗ 1 |−〉 = − |−−〉
(11)

We see here that τ12 acts on the |++〉 and |−−〉 in a way that is similar to how σ3 acts on |+〉 and |−〉.
We will find a similar relationship for the remaining generators when acting on these state. For each of the

2



generators, we find

τ23 |++〉 = − |−−〉 , τ23 |−−〉 = − |++〉 ,

τ31 |++〉 = − |−−〉 , τ31 |−−〉 = − |++〉 ,

τ14 |++〉 = −i |−−〉 , τ14 |−−〉 = i |++〉 , (12)

τ24 |++〉 = −i |−−〉 , τ24 |−−〉 = i |++〉 ,

τ34 |++〉 = |++〉 , τ34 |−−〉 = − |−−〉 .

We immediately see that these generators come in pairs. The generators τ12 and τ34 acting on these states

both have the same effect on |++〉 and |−−〉. Similarly, τ31 and τ24 can be paired together, as well as τ23

and τ14. We can form three operators forSU(2) from these pairs of generators,

1

2
(τ12 + τ34) ,

1

2
(τ31 + τ24) ,

1

2
(τ23 + τ14) . (13)

These acting on the states |++〉 and |−−〉 represent SU(2). We can do a similar thing by taking

1

2
(τ12 − τ34) ,

1

2
(τ31 − τ24) ,

1

2
(τ23 − τ14) (14)

with |+−〉 and |−+〉 to form another representation of SU(2). These are the S+ and S− representations,

respectively. We note that the operators associated with S+ acting on the states associated with S− return

0. The operators of S− with the states of S+ behave the same way.

4 Real, Pseudoreal, or Complex

4.1 The Condition for Reality or Complexity

We are interested in the behavior of these spinor representations under complex conjugation. We recall

that a representation is real or pseudoreal if D(g)∗ = CD(g)C−1 for some unitary matrix C and complex

otherwise. Last semester, we proved that this condition is equivalent with the requirement that ζTCψ is

invariant under transformations D(g), where ζ and ψ are states that are acted on by the representations

of the group. Additionally, we know that the representation is real for S symmetric and pseudoreal for S

antisymmetric.

For SO(2n), we can write an arbitrary element as D(g) = e
i
4ωijτij , where Einstein summation is used.

Then the condition for the representation to be real or pseudoreal is

ζTCψ → ζT e
i
4ωijτ

T
ijCe

i
4ωijτijψ ≈ ζTCψ +

i

4
ωijζ

T
(
τTijC + Cτij

)
ψ. (15)

The condition for invariance is then

τTijC = −Cτij (16)
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Since the τij are Hermitian, this is equivalent with

C−1τTijC = C−1τ∗ijC = −τij (17)

We note that any C that satisfies this condition is not unique. For instance, if we have some C that does

satisfy the above condition, γFC will also be invariant, as γF commutes with all of the γ matrices.

4.2 Determining C

We determine a general form for C using an induction argument. We use SO(4) as our base case. For SO(4),

we make a make an inspired guess1 and choose C = iτ2 ⊗ τ1. We check to see if Eq. (16) is satisfied for a

specific τij

τT12C = i
(
σT3 ⊗ 1

)
(σ2 ⊗ σ1) = i (σ3σ2 ⊗ σ1) = −i (σ2σ3 ⊗ σ1) = −Cτ12 (18)

Checking the remaining τij are left as an exercise.

With the base case satisfied, we then make the inductive step. Label the conjugation matrix for SO(2n)

as Cn. Our goal is then to find Cn+1 in terms of Cn. We do this by first assuming that Cn+1 = Cn ⊗ κ,

where κ is some 2 × 2 matrix. Earlier we had determined the form for the generators of SO(2(n + 1)) in

terms of the generators of SO(2n). These relations are rewritten here for convenience.

τ
(n+1)
ij = −iγ(n+1)

i γ
(n+1)
j = τ

(n)
ij ⊗ 1 (19)

τ
(n+1)
i,2n+1 = γ

(n)
i ⊗ σ2 (20)

τ
(n+1)
i,2n+2 = −γ(n)i ⊗ σ1 (21)

τ
(n+1)
2n+1,2n+2 = 1⊗ σ3, (22)

where the superscripts denote the dimension of SO(2n) with which the object is associated. Inserting Eq.(22)

into Eq.(17), we find that κ must either be σ1 or iσ2, where we have added an i to the σ2 to ensure its

arguments are real. Doing the same Eq. (20) and Eq. (21), we get

C−1n+1τ
(n+1) T
i,2n+1 Cn+1 = C−1n γ

(n) T
i Cn ⊗ (κ−1σ2κ) = −γ(n)i ⊗ τ2 (23)

C−1n+1τ
(n+1) T
i,2n+2 Cn+1 = −C−1n γ

(n) T
i Cn ⊗ (κ−1σ2κ) = γ

(n)
i ⊗ τ1 (24)

Equating the first terms in the direct products, we find as a condition for Cn

C−1n γ
(n) T
i Cn = (−1)nγ

(n)
i (25)

Combining this with the expression for κ, we find

Cn+1 =

Cn ⊗ σ1 for n odd

Cn ⊗ iσ2 for n even
(26)

1The reader is welcome to credit whatever source they so desire for this inspiration.
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We can also write out Cn explicitly now as

Cn = iσ2 ⊗ σ1 ⊗ iσ2 ⊗ σ1 · · · (27)

4.2.1 Symmetric or Antisymmetric?

We naturally want to know if Cn is symmetric or symmetric, as such a feature distinguishes between real

and pseudoreal representations. We do so by defining some set {an} ∈ Z such that CTn = (−1)anCn.

Combine this with Eq. (27) to obtain the recursion relation (−1)(an+1) = (−1)an+n+1. Solving this, we find

an = 1
2n(n+ 1). Now, for the relationship between CTn and Cn we have

CTn = (−1)
1
2n(n+1)Cn (28)

Therefore, we see that for n = 2, 5, 6, 9, · · · the matrix Cn is antisymmetric and for n = 3, 4, 7, 9, · · · the

matrix Cn is symmetric.

4.2.2 Alternate Definition of C

We can also determine C by looking at the symmetry of the γi. It is easy to show that γTi = (−1)i+1γi, i.e.

the γi are antisymmetric when i is even and symmetric when i is odd. We can rewrite Eq. (16) as

(γiγj)
TC = γTj γ

T
i C = −γTi γTj C = −Cγiγj

=⇒ γTi γ
T
j C = Cγiγj (29)

The lefthand side of the equation reduces to the following cases:

γTi γ
T
j =

γiγj if one of i or jare odd

−γiγj if both i and j are odd or even
(30)

If the first case is true, then Eq. (29) is γiγjC = −Cγiγj . If the second case is true, then it is γiγjC = Cγiγj .

Both of these conditions are satisfied when C is a product of even γi. For example, in the case of n = 3,

C = γ2γ4γ6.

4.3 The Conjugate Spinor

We return to the task of determining the reality of the spinor representations. First we define projection

operators P± as

P± =
1

2
(1± γF ) (31)

These projection operators will project out only the coordinates associated with the right or left-handed

spinor representation from some spinor ψ. Then, when we transform some spinor, we have ψ → e
i
4ωijτijP±ψ.

The conjugate of ψ will then transform as ψ∗ → e−
i
4ωijτ

∗
ijP ∗±ψ

∗. The question of whether or not the spinor
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representation is real or complex then reduces to determining if there is a C such that

C−1e−
i
4ωijτ

∗
ijP ∗± = e

i
4ωijτijP±C (32)

If there was, then the conjugate spinor ψc would transform as

ψc = C−1ψ∗ → C−1e−
i
4ωijτ

∗
ijP ∗±ψ

∗ = e
i
4ωijτijP±C

−1ψ∗, (33)

which is the same way ψ transforms. We can rearrange the above relationship slightly to get

C−1τ∗ij
1

2
(1± γF )∗C = −τij

1

2
(1± γF ) (34)

To simplify this expression, we use the fact that we can write γF = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 along with Eq. (27)

to show

C−1n γFCn = (−1)nγF (35)

This, along with Eq. (16), can be used to show

C−1τ∗ij
1

2
(1± γF )∗C = C−1τTij

1

2
(1± γF )C = τij

1

2
(1± (−1)nγF ) =

− 1
2τijP± if n is even

− 1
2τijP∓ if n is odd

(36)

This means that when n is even, taking a complex conjugate of S+ just maps the representation to itself,

and likewise of S−. However, when n is odd, complex conjugation takes S+ to S− and S− to S+.

This is consistent with thinking of the S+ and S− as states represented by Dirac notation. Recall that

S± are associated with states |ε1 · · · εn〉 where
∏
j εj = ±1. Since we know from Eq. (27) C is an alternating

product of σ1 and σ2, each εj is flipped when applying C to the state. Therefore, when n is even, an even

number of states are flipped, and the total product of the εj is unchanged. This means that C acting on

some state associated with S± maps it to S±. When n is odd, the sign of product of the εj is flipped, so S±

is mapped to S∓.

All that remains is to then determine which representations are real and which are pseudoreal. Since we

already determined the symmetry or antisymmetry of C, however, this becomes fairly trivial. We already

know that our candidates are strictly for n even, so we can take n = 2k. From Eq. (28), we then know

CT = (−1)k(2k+1)C = (−1)kC. Therefore, we can summarize the reality of SO(2n) in the following table.

SO(4k + 2) complex
SO(8(k + 1)) real
SO(8k + 4) pseudoreal

5 Spinor Representation for Odd Dimensional SO(n)

Thus far, we have only considered the case of the even dimensional SO(n). It is natural to ask how one can

generate these spinor representations for the odd dimensional case. There are two options. The first option
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is to start from a higher dimensional algebra and decrease dimension by one to get SO(2n− 1). The second

option is then to start from a lower dimensional SO(2n) and move to SO(2n+ 1).

The first option is extraordinarily simple. If we are given SO(2n), to form the γi for SO(2n−1) we simply

take the same γi as SO(2n), but leave out γ2n. There is a subtlety here, however. The γF for SO(2n − 1)

will still include γ2n, as this is needed to commute with all of the other γi. There is no problem with this,

as γ2n can still be defined for SO(2n− 1) even if it is not considered to be one of the γi.

The second option is similarly straightforward. To obtain the necessary γi for SO(2n+ 1), just add the

γF to the set of γi for SO(2n). Alternatively, one could also add

γ2n+1 = 1⊗ 1⊗ · · · ⊗ 1⊗ σ3, (37)

which satisfies the same symmetry properties needed for the additional γ matrix.

5.1 C in SO(2n+1)

To find C, we will use a similar definition to what we used in SO(2n), but with some small changes. First, we

must note that C will be half as big in SO(2n−1). However, C will have the same dimensions in SO(2n+1)

as in SO(2n). We can see how this is so by recalling that we could write C as a product of the even γi.

When adding one additional matrix, we are not changing the number of even γi, so C will be the same in

SO(2n) and SO(2n+ 1).

6 System of n Fermions

There is an interesting relationship between the spinor representations of SO(2n) and a system with n

fermions. This has already been hinted at in the use of the Dirac notation to describe the states on which

the generators of SO(2n) act.

6.1 Review of Fermionic Systems

It is well known that fermions (particles of half-integer spin) obey the Pauli Exclusion Principle. That is,

given some quantum state for a fermion, no more than one fermion can occupy that state. Therefore, for a

system with one possible state, we can describe the system as either |0〉 or |1〉. This is a contrast from bosons

(particles of integer spin), which can have any number of particles occupying a single state. However, in

spite of this difference, we are still encouraged to define creation and annihilation operators for the fermionic

states in the same spirit as we do for the bosonic states. In the case of fermions, we will define two operators

as follows

b |1〉 = |0〉 , b† |0〉 = |1〉 (38)

b |0〉 = 0, b† |1〉 = 0. (39)
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Following the same naming conventions as in the bosonic case, we call b the annihilation operator, and b†

the creation operator. Combing these relations, we find that

(
bb† + b†b

)
|0〉 = |0〉 , (40)(

bb† + b†b
)
|1〉 = |1〉 . (41)

This means that {b, b†} = 1, where the curly braces indicate the anti-commutator.2 We can define a number

operator, N = b†b, which will indicate how many particles are in the state. Also, since we can neither put

more than one particle in a state nor annihilate the vacuum state, we must also have

(
b†
)2

= 0, b2 = 0. (42)

We can find matrix representations of these operators as well if we write the states of the systems as column

vectors.

|0〉 =

(
0

1

)
, |1〉 =

(
1

0

)
, (43)

b =

(
0 0

1 0

)
, b† =

(
0 1

0 0

)
, N =

(
1 0

0 0

)
(44)

Looking at these matrix representations, we see that we can also write these creation and annihilation

operators in terms of the Pauli matrices

b† =
σ1 + iσ2

2
, b =

σ1 − iσ2
2

(45)

Based on the earlier work on SO(2), we would expect to be able to connect that group to this system in

some way. Recall the generator for SO(2) is σ3. We can write this generator in terms of these operators as

σ3 = 2N − 1 = 2b†b− 1 = b†b− bb†. (46)

This is a linear combination of a multiplication of these creation and annihilation operators. We expect, then,

when we go to the case of n fermions that we can form the generators of SO(2n) from linear combinations

of these creation and annihilation operators.

6.2 Fermionic System with n States

Previously we had considered the case of a system with a single energy state available. Now take the case

of a system with n possible states. We write such a system as |ε1 · · · εn〉. We note that while previously we

had defined the εj as ±1, here we are defining them as . While this notation is used to draw the comparison

to the number of fermions in a state, the two labels provide equivalent descriptions.

2Compare to the canonical bosonic relationship [a, a†] = 1 obtained when setting ~ = ω = 1.
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Now there are a total of n operators which satisfy

{bi, b†j} = δij , {bi, bj} = {b†i , b
†
j} = 0 (47)

The number operator for the jth state is defined as Nj = b†jbj . We have for this operator acting on the state

Nj |ε1 · · · εn〉 = εj |ε1 · · · εn〉.
We now set out to determine the generators of SO(2n) from these operators. As mentioned before,

we expect the generators to come from linear combinations of bibj , b
†
i b
†
j , b

†
i bj , and bib

†
j . However, note

that due to the canonical commutation relation the bi and b†i satisfy, the difference between b†i bj , and bib
†
j

is only a constant term. Therefore, we only consider the first three bilinear operators. By using these

anticommutation relations, we can determine that there are a total of n(n− 1)/2 unique operators for each

bibj and b†i b
†
j . However, there are n2 terms for b†i bj . These add up to 2n(2n − 1)/2, which is equal to the

number of generators for SO(2n).

7 Conclusion

These spinor representations of SO(2n) have numerous uses in physics. Perhaps the most obvious and well

known uses are in the Weyl and Dirac equations, where the state of the particle of interest is represented by

a spinor. However, it also has important applications in condensed matter physics. One example of this is

the 2-d Ising model. While Onsager provided the original solution to the 2-d Ising model using Lie theory,

Kaufman was able to simplify the solution significantly by relating the problem to a system of many free

fermions. By using this spinor representation along with a few other tools, Kaufman was able to successful

determine the partition function for the 2-d Ising model exactly.
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