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Abstract 

This paper is a summary of what we covered in one of our weekly discussions on 

quantum entanglement. It’s largely a reproduction of section 4.1, 4.2 of Preskill’s 

Intro to Quantum Computing lecture notes [1] and section 12.1, 12.2 of Griffth’s 

Introduction to Quantum Mechanics [2]. 

1. Introduction 

In quantum mechanics, particle behaves quite differently compared to the 

classical point of view. One of the mysterious phenomena that quantum mechanics 

predicted, and that experiments confirmed, is entanglement. In the early years 

when scientists developed quantum mechanics, it’s indeed disturbing to accept 

the instant action and nonseparability between particles, considering Dr. Einstein 

just refreshed our mind with spacetime locality in couple of years ago. What’s the 

property of entangled states? How to make measurements in entangled states? We 

will go through the technique and the science history development behind it. 

2. The Nonseparability of Entangled States 

We’ve talked about the “separable” states in previous meetings. We say the 

composite Hilbert space of single Hilbert space 𝐻𝐴 and 𝐻𝐵,  𝐻𝐴𝐵, is the tensor 

product of two space: 𝐻𝐴𝐵 = 𝐻𝐴⨂𝐻𝐵 . The composite state is then the tensor 

product of two separate states from two subspace: 

 |𝜙⟩𝐴𝐵 = |𝜙⟩𝐴⨂|𝜙⟩𝐵 

In this case, making measurements on subsystem A or B doesn’t affect the other 

subsystem. I might call this “separable pair.” When say two qubits are “entangled”, 

the two qubits subsystem is in a state of the following form: 

 |𝜙⟩𝐴𝐵 = 𝛼|00⟩𝐴𝐵 + 𝛽|11⟩𝐴𝐵 

which is a linear combination of two orthonormal basis states with 𝛼2 + 𝛽2 = 1. 

One can no longer measure one subsystem without affecting the other subsystem, 

because the state will collapse into the basis. The maximally entangled state is 



when 𝛼 = 𝛽 =
1

√2
, in which when one makes a measurement, the state |𝜙⟩ has a 

fifty-fifty probability to collapse two basis. Correspondingly, the density operator 

will be: 

 𝜌𝐴 = 𝑡𝑟𝐵(|𝜙+⟩⟨𝜙+|) =
1

2
𝐼𝐴 

 𝜌𝐵 = 𝑡𝑟𝐴(|𝜙+⟩⟨𝜙+|) =
1

2
𝐼𝐵 

This means the local measurement result will be completely random. The 

information of the state is likely “hidden” from us. One might construct a basis 

using, all 4 of the maximally entangled states in two qubits system: 

 |𝜙±⟩𝐴𝐵 =
1

√2
(|00⟩𝐴𝐵 ± 𝛽|11⟩𝐴𝐵) 

 |𝜓±⟩𝐴𝐵 =
1

√2
(|01⟩𝐴𝐵 ± 𝛽|10⟩𝐴𝐵) 

Preskill used the example of Alice, Bob, and Charlie again. Suppose Charlie encodes 

one of the above state on two qubits A and B, sending A to Alice and B to Bob. If 

they can’t communicate, none of them are able to figure out the “parity bit” 

(+ or −) and “phase bit” (𝜙 or 𝜓). However, locally, Alice or Bob may apply 𝜎3, 𝜎1 

on her qubit. 

 𝜎3 = (
1 0
0 −1

 ) , 𝜎1 = (
0 1
1 0

 ) 

We have |0⟩𝐴 = (
1
0

)
𝐴

, |0⟩𝐵 = (
0
1

)
𝐵

, then 

 𝜎3 |0⟩𝐴 = |0⟩𝐴, 𝜎3 |1⟩𝐴 = −|1⟩𝐴 

 𝜎1 |0⟩𝐴 = |1⟩𝐴, 𝜎1 |1⟩𝐴 = |0⟩𝐴 

Note that the entangled state will correspondingly transform. After applying 𝜎3, 

the phase bit will flip: 

 |𝜙+⟩ ↔ |𝜙−⟩, |𝜓+⟩ ↔ |𝜓−⟩ 

And after applying 𝜎1, the parity bit will flip: 

 |𝜙+⟩ ↔ |𝜓+⟩, |𝜙−⟩ ↔ −|𝜓−⟩ 

Once Alice and Bob communicate, they are able to determine which of the four 

states their qubits are in. One may concretely summarize the property as: the 

entangled basis states are the simultaneous eigenstates of two commuting 



observables (𝜎3 and 𝜎1): 

 𝜎1
(𝐴)

⨂𝜎1
(𝐵)

,  𝜎3
(𝐴)

⨂𝜎3
(𝐵)

 

The moral of the story is that for such entangled qubits, we are allowed to 

manipulate the bits by applying certain operators, as long as they don’t deteriorate 

the state. We don’t need to know the information of the single qubit and that 

“separated” basis{|00⟩𝐴𝐵, |11⟩𝐴𝐵, |01⟩𝐴𝐵, |10⟩𝐴𝐵}, and rather we can just focus on 

the new basis of entangled states {|𝜙±⟩ , |𝜓±⟩ }. The qubit pairs are inseparable, 

so let’s just stop treating them like independent object and measure them 

separately. I personally believe that this process inherits the classic technique of 

coordinate transformation, like what we do in degenerate perturbation theory 

(not sure if this is an abuse of math). One can also transform inversely. As Preskill 

points out, when being brought together, Alice and Bob may transform their pairs 

jointly, by applying a unitary transformation and rotate the basis {|𝜙±⟩ , |𝜓±⟩ } 

back to {|00⟩𝐴𝐵, |11⟩𝐴𝐵, |01⟩𝐴𝐵, |10⟩𝐴𝐵} . Quantum circuits are actually based on 

these operators (Hadamard transform; CNOT transform). 

3. Einstein Locality and EPR 

The Einstein locality may be summarized as:  

Suppose that A and B are spacelike separated systems. Then in a complete 

description of physical reality an action performed on system A must not modify the 

description of system B. 

Indeed, Einstein was discomforted with the entanglement phenomenon. The 

entanglement phenomenon implies instant actions that exceeds the speed of light, 

which violate the Einstein locality. In 1953, He along with Podolsky and Rosen 

(EPR) brought up this as the EPR paradox (The two particle pairs, two qubits pairs, 

are all called EPR pairs). In fact, he would not like to accept the indeterminacy of 

quantum theory at all and claimed that the theory is “incomplete.” The 

“determinant” theories, which admired by Einstein, are also called local hidden-

variable theories. Not like quantum theory that adopts a totally probabilistic 

interpretation of the world, hidden-variable theories believe that the world 



appears to be probabilistic because we are not omnipotent to know everything, i.e., 

there’re some hidden variables, for example, 𝜆 . Einstein believed that the 

quantum theory needs to include some more hidden variables to be complete and 

to reveal the fundamentally deterministic viewpoint of the world. 

 Griffiths in his textbook points out why the paradox could be so disturbing. 

Physicists never wish to abandon the Einstein locality, but they have no choice 

when they notice that the conservation of momentum may collapse, an even more 

horrible consequence. Consider the creation of electron-positron pair in a 𝜋0 

decay reaction. The electron and positron will fly away from each other, and they 

occupy the singlet spin state: 

 
1

√2
(|10⟩ − |01⟩) 

As quantum physics predicts, and as what experiments showed, measuring one of 

them and find it to be in a spin-up state, we immediately know that the other is in 

the spin-down state; vice versa, no matter how far they are. By locality, we might 

propose that it takes some time for the entanglement action to “travel” in the space. 

That’s when the conservation of moment collapses. Thus we say in entanglement, 

the collapse of the wave function is instantaneous. 

4. The Bell Inequality 

Bell inequality proved that none of the hidden-variable theories will save us 

from the paradox. Preskill used Alice and Bob’s dialogue example; I personally 

prefer Bell’s thought experiment that Griffiths presents in his textbook. Suppose 

we use the 𝜋0  decay experiment again. On the track that the electron and the 

positron travel, set electron detector 𝐴 and positron detector 𝐵, in the direction 

of unit vector 𝒂 and 𝒃.  

 

(Griffiths, P569) 



Each detector measures the spin of particle in its corresponding vector, and the 

result of measurement is either 1 or −1. The example in previous section is the 

special case of this thought experiment that 𝒂 = 𝒃, in which after measuring, we 

always find one particle spin-up and the other spin-down. If we list result and 

calculate the product of results, we should have something like: 

electron positron product (𝑃) 

1 -1 -1 

1 1 1 

-1 1 -1 

-1 -1 1 

In the case 𝒂 = 𝒃, the product 𝑃(𝒂, 𝒃) is always −1. On the other hand, if 𝒂 =

−𝒃  (anti-parallel), then the product 𝑃(𝒂, 𝒃)  is always 1 . Actually, 𝑃(𝒂, 𝒃) =

−𝒂 ⋅ 𝒃. In 1964, J. S. Bell showed that this result is incompatible with any hidden 

variable theory. 

 The prove is as the following: suppose a hidden variable 𝜆 deterministically 

decides the measurement of the spin of two particles. Say, 𝐴(𝒂, 𝜆) and 𝐵(𝒃, 𝜆) 

which take value ±1 are the outputs of measurements on electron and positron. 

When the detectors are aligned, the results are perfectly anti-correlated: 

  𝐴(𝒂, 𝜆) = −𝐵(𝒂, 𝜆) → |𝐴(𝒂, 𝜆)𝐴(𝒃, 𝜆)| = 1 

Regardless of the value of 𝜆. And by the hidden variable theory, the average of the 

product of the measurements is  

 𝑃(𝒂, 𝒃) = ∫ 𝜌(𝜆) 𝐴(𝒂, 𝜆)𝐵(𝒃, 𝜆)𝑑𝜆 

Where 𝜌(𝜆) is the probability density for the hidden variable. Thus 

 𝑃(𝒂, 𝒃) = −∫ 𝜌(𝜆) 𝐴(𝒂, 𝜆)𝐴(𝒃, 𝜆)𝑑𝜆  

And suppose 𝒄 is some other unit vector, then 

 𝑃(𝒂, 𝒃) − 𝑃(𝒂, 𝒄) = −∫ 𝜌(𝜆) [𝐴(𝒂, 𝜆)𝐴(𝒃, 𝜆) − 𝐴(𝒂, 𝜆)𝐴(𝒄, 𝜆)]𝑑𝜆 

Since 𝐴(𝒃, 𝜆) = ±1, (𝐴(𝒃, 𝜆))
2

= 1, we may write 

 𝑃(𝒂, 𝒃) − 𝑃(𝒂, 𝒄) = −∫ 𝜌(𝜆) [𝐴(𝒂, 𝜆)𝐴(𝒃, 𝜆) − 𝐴(𝒂, 𝜆)𝐴(𝒄, 𝜆)]𝑑𝜆 

  = −∫ 𝜌(𝜆) [𝐴(𝒂, 𝜆)(𝐴(𝒃, 𝜆) − 𝐴(𝒄, 𝜆))]𝑑𝜆 



  = −∫ 𝜌(𝜆) [
𝐴(𝒂,𝜆)

𝐴(𝒃,𝜆)
((𝐴(𝒃, 𝜆))

2
− 𝐴(𝒃, 𝜆)𝐴(𝒄, 𝜆))] 𝑑𝜆 

  = −∫ 𝜌(𝜆) [𝐴(𝒂, 𝜆)𝐴(𝒃, 𝜆)(1 − 𝐴(𝒃, 𝜆)𝐴(𝒄, 𝜆))]𝑑𝜆 

Also because (1 − 𝐴(𝒃, 𝜆)𝐴(𝒄, 𝜆)) ≥ 0,  

 |𝑃(𝒂, 𝒃) − 𝑃(𝒂, 𝒄)| ≤ ∫ 𝜌(𝜆) (1 − 𝐴(𝒃, 𝜆)𝐴(𝒄, 𝜆))𝑑𝜆 

Which is equivalent to, the Bell inequality: 

 |𝑃(𝒂, 𝒃) − 𝑃(𝒂, 𝒄)| ≤ 1 + 𝑃(𝒃, 𝒄) 

Even we don’t know anything about the hidden variable 𝜆, we know that it should 

suffice this inequality in nature. But the quantum mechanical prediction is 

certainly incompatible with the inequality: suppose unit vector 𝒂, 𝒃, and 𝒄 takes 

the following configure: 

 

(Griffith, P571) 

Then 𝑃(𝑎, 𝑏) = 0, 𝑃(𝑎, 𝑐) = 𝑃(𝑏, 𝑐) = −
1

√2
≈ −0.707, 

While the Bell’s inequality states 

 0.707 ≤ 1 − 0.707 = 0.293 

A contradiction occurs. The quantum mechanics is thus incompatible with any 

hidden variable theory. 

5. Conclusion 

We examined the properties of two qubits entangled states and showed that by 

switching basis, we can adopt the entangled states as new basis to avoid the 

wavefunction collapse issue. We reviewed the EPR paradox and how Einstein wish 

to develop the hidden variable theories to complete the quantum physics and 

remove the indeterminacy. We lastly reviewed how Bell’s inequality shattered 

Einstein’s dream of physics theory unification, proving the incompatibility 



between quantum physics and hidden variable theories. 

Whether Einstein wanted it or not, experiments forced us to accept the weird 

instant correlations among the measurement outcomes of entangled pairs. What 

if the world is inherently probabilistic? Not a big deal. The crucial step is to switch 

to the new perspective and accommodate it, like how Alice and Bob switch to the 

new basis, upon which life will certainly gain new meaning.  
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