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Abstract

This paper introduces the concept of entropy and shows how it can help with answering the following
questions: how much a piece of message can be compressed, how much information we get if we receive
a message from a noisy channel, and what the maximum rate of transmission of information is with a
noisy channel. Then we will generalizes entropy from the context of classical information to quantum
information. We will see that assuming the initial quantum system is not entangled with the environment,
the total entropy will increase.

1 Introduction

A message is a string of letters chosen from {a1, a2, ..., ak} independently, with priori probability p(ai).
For example, let’s say Alice and Bob speak a language that has an alphabet of 4 letters: {a, b, c, d}.
In this language, a occurs with probability 1/2, b occurs with probability 1/4, c and d occurs with
probability 1/8. Then any thing written in this language can be considered as a message. If the letters
in a message follow the priori probability distribution very well, this message is called a typical string.
Now suppose Alice send Bob a message. Bob don’t know anything about this message, and he is only
allowed to look at the first letter. If Bob sees the first letter is a, he gets 1 bit of information, because
now the probability space of the possible messages 1

21 of the probability space before Bob looks. If
Bob sees the first letter is d, he gets 3 bits of information, because now the size of probability space
decreases by 1

23 . We can see that although the number of letters that Bob sees is the same, the amount
of information he gets is different. We can also see that two messages of the same length may have
different amount of information. We may ask: is it possible to compress messages, that is, can we find
a way to code them while the information contained is not changed?

2 How Much a Piece of Message can be Compressed

Consider strings chosen from {0, 1} with p(0) = 1 − p and p(1) = p. Let’s say we want to compress
these strings. When they are very long, by the law of large number, almost all of them are typical. So
to compress them, we only need to code the typical strings. A typical string of length n will contain
about np 1’s. Therefore the number of typical strings is around

(
n
np

)
. Taking log base two and applying

Sterling approximation (all the log in the paper means log base two), we get:

log

(
n

np

)
≈ nH(p) (1)

where
H(p) ≡ −plog(p)− (1− p)log(1− p) = −⟨log p⟩ (2)

H(p) is entropy. There are about 2nH(p) typical strings, each occurring with equal probability. To code
them with a binary code, we need around 2nH(p) distinct codes, so the length of the codes should be
around nH(p). Since 0 ≤ H(p) ≤ 1 for 0 ≤ p ≤ 1, we say it is possible to compress most of messages.
In fact, H(p) = 1 only when p = 1/2. That is, only when p = 1/2, we still need n letters to specify
a message. In other cases, a message can be specified by a shorter code. This is where the idea of
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compressing messages is brilliant: most of useful messages are long, so by theorem, they will follow the
priori probability distribution very well. Therefore, just code the typical strings is enough.

If the message is not binary, it can be shown in a similar way that the number of typical strings is

2nH(X) (3)

where
H(X) ≡

∑
x

−p(x)log p(x) = −⟨log p(x)⟩ (4)

H(X) is entropy. Since we need nH(X) bits of information to specify a message, entropy measures
our priori ignorance per letter. To see this better, we can look at the probability of a message and apply
the central limit theorem.

Let x be a n-letter message x1x2...xn. It occurs with a priori probability

P (x) = p(x1)p(x2)...p(xn) (5)

Take a log base two on both sides,

log P (x) =

n∑
i

log p(xi) (6)

Multiply by -1/n,

− 1

n
log P (x) = − 1

n

n∑
i

log p(xi) = −⟨log p(x)⟩ = H(X) (7)

Then the central limit theorem tells that: if n is large enough, for any δ > 0, we have

H(X)− δ < − 1

n
log P (x) < H(X)− δ (8)

and the total probability of typical strings exceeds (1 − ϵ) ∀ϵ > 0. Or, in other words, typical strings
occur with probability 1− ϵ, and each typical string has probability P (x) such that

2−n(H−δ) ≥ P (x) ≥ 2−n(H+δ) (9)

Let N(ϵ, δ) be the number of typical strings. Since the total probability of typical strings is between 1
and 1− ϵ, we have:

1 > 2−n(H−δ)N(ϵ, δ) ≥
∑
x

P (x) ≥ 2−n(H+δ)N(ϵ, δ) > 1− ϵ (10)

Hence, we have a bound for N(ϵ, δ):

2n(H−δ) > N(ϵ, δ) > (1− ϵ)2n(H+δ) (11)

To encode a message with a binary code, its length needs to be n(H + δ)

3 How Much Information we Get if we Receive a Message from
a Noisy Channel

Now suppose we have a noisy channel: if a string x is sent via the channel, there will be some independent
random error during the transmission, so when x is received, it becomes y. Suppose we are very familiar
with the properties of the channel so that we know p(x|y). We want to answer the question: how much
we know about x when y is received. We can’t say for sure that x is y, since it is not very probable that
no error happens during the transmission. But we do know more about x, because x is likely a string
that is the same with y except for a few letters that are changed by error. In fact, we can update the
distribution of x using Bayes rule.

p(x|y) = p(y|x)p(x)
p(y)

(12)
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where p(y|x) and p(x) are already known, and p(y) can be computed by

p(y) =
∑
x

p(y|x)p(x) (13)

With this new distribution of x we can define conditional entropy similar with how we define entropy
before:

H(X|Y ) ≡ −⟨log p(x|y)⟩ (14)

Now just nH(X|Y ) more bits of information is need to specify x. Hence, the information about x that
I gain when I learn y is quantified by how much ignorance is reduced by learning y.

I(X : Y ) ≡ H(X)−H(X|Y ) (15)

This is how I(X : Y ), mutual information, is defined. It is easy to see that if X and Y are independent
random variables, I(X : Y ) = 0

4 Maximum Rate of Transmission of Information Using a Noisy
Channel

We just showed that although the channel is noisy, the receiver can still get some information. So if
we encode our message with a longer code, which is supposed to be more robust to errors, the receiver
should be able to specify the message with certainty. What is the lower bound of the bits of the code
such that the receiver is still able to decode the message without error? Suppose the message we want
to send is binary. Suppose the channel flips a bit with probability p. If we encode a k bits message with
more bits, say n bits. We define the rate of the code as

R ≡ k

n
(16)

For a n-bit encoded input, the channel will make about np errors, so the input string diffuses to an
output string that is randomly chosen from in the error sphere centered at the input string that contains
about

(
n
np

)
≈ 2nH(p) output strings. The left figure of fig. 1 shows how this can be visualized.

Figure 1: On the left figure, the biggest circle represents the output space consisted of all the
possible n-bit output strings. The blue points are the n-bit strings that are chosen randomly to
encode those binary k-bit messages. They are called input strings or codewords. For simplicity
these codewords are represented by letters A, B, C, and so on. The smaller circles represent the
error spheres that contains all the output strings that are the same with the codewords except
for about np bits that are flipped due to the errors of the channel. The right figure shows the
received string Y and its Hamming sphere. The blue points still represent the codewords.

If two error spheres overlap, and if the output string happens to be a string inside the overlapped
region, we will not be able to figure out what the message is with certainty, since the message could be
any one of the messages whose error sphere contains the output string.
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We want to find the upper bound of the rate for this channel. We can start by establishing restrictions
on the rate. Without considering that the error spheres might overlap, an obvious restriction is that the
”volume” of output space should be larger than the sum of the ”volume” of the all the error spheres.
The ”volume” of the output space means the number of all the possible output strings, which is 2n. The
”volume” of the error sphere means the number of strings in the error sphere, which is about 2nH(p).
Since we want to encode 2k or 2nR messages, the number of error spheres is 2nR. Hence, the restriction
is

2nH(p)2nR ≤ 2n (17)

It is easy to see this means
R ≤ 1−H(p) ≡ C(p) (18)

where we define C(p) as the channel capacity. We will see that the rate of a code can be made as close
to the channel capacity as wanted.

Suppose we randomly choose codewords from the output space to encode the messages. This is not a
good way to encode messages, but it helps. Suppose the message E is sent and the output string is Y , as
indicated by the red dot in the right figure. To decode, we draw a Hamming Sphere around the output
string Y that contains all the strings that are the same with Y except for np+ δ bits. The volume of the
Hamming sphere is 2n(H(p)+δ. Since this volume is slightly larger than that of the error sphere, when n
goes to infinity, we will always find one or more codewords in the Hamming sphere. If there is exactly
one codeword in the Hamming sphere, then it has to be the message that is sent. If there is more than
one codeword in the Hamming sphere, we have a decoding error. How large is the the probability of
decoding error? The Hamming sphere occupies a fraction f of the whole output space.

f =
2n(H(p)+δ)

2n
= 2−n(C(p)−δ) (19)

Since the codewords are chosen randomly, the probability for a particular codeword aside from E falling
in the Hamming sphere is f. The probability that one or more than one of the 2nR − 1 codewords aside
from E falling in the Hamming sphere is smaller than

2nRf = 2−n(C(p)−R−δ (20)

Since δ is very small and n is very large, R can be chosen very close to C, while probability of decoding
error is exponentially small.

What we have shown is that there exist a randomly generated code such that the probability of
decoding error is very small just for some codeword E and for some output string Y that belongs to its
error sphere. What about other output strings and codewords? In fact, since the codewords are chosen
randomly, their distribution should be even in the output space. This means what we just proved should
not be a special case. The average probability of decoding error over all the outputs and codewords
should be similar with the probability of decoding error given the output is Y and the message sent is
E, which is small. Let pi denote the probability of decoding error when codeword i is sent. For any
positive ϵ and a n large enough, there exist a randomly chosen code such that

1

2nR

2nR∑
i=1

pi ≤ ϵ (21)

There may be some codewords that have very large probability of decoding error, which is not wanted.
But we can throw away these codewords so that the probability of decoding error of EACH codeword is
smaller than 2ϵ, and we will see that this will barley decrease the rate of the code.

Let N2ϵ denote the number of codewords with pi > 2ϵ,

1

2nR
(N2ϵ)2ϵ <

1

2nR

2nR∑
i=1

pi ≤ ϵ ⇒ N2ϵ < 2nR−1 (22)

Throwing the N2ϵ bad codewords away, the rate of the new code becomes

Rate = R− 1

n
(23)

When n is very large, the new rate is close to R, which is close to the channel capacity.
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5 Von Neumann Entropy

Now we generalize entropy from the context of classical information to quantum information. Imagine a
source that prepares messages of n ”letters”, where each ”letter” is chosen from an ensemble of quantum
states {ρρρ(x)} with a priori probability p(x). If the observer is ignorant about what a letter is, the letter
is represented by a density matrix

ρρρ =
∑
x

p(x)ρρρ(x) (24)

It can be diagonalized as

ρρρ =
∑
a

λa |a⟩ ⟨a| (25)

The Von Neumann EntropyH(ρρρ) is defined as the negative of the expectation of the log of the probability
distribution, which is the same with the entropy in classical information. (Here the log is still log base
2)

H(ρρρ) ≡ −
∑
a

λalogλa = −tr(ρρρlogρρρ) (26)

Von Neumann Entropy plays many roles. First, it is the minimum number of qubits per letter needed
to encode the information. Second, it is the maximum amount of classical information per qubit that
we can gain about the preparation by making the best possible measurement. Third, it quantifies the
entanglement between quantum systems.

We will introduce three of its mathematical properties.
First, if ρρρ is a pure state, H(ρρρ) = 0

ρρρ = |a⟩ ⟨a| ⇒ H(ρρρ) = −1log1 = 0 (27)

Second, entropy does not change under unitary evolution. This is because unitary evolution is
basically a change of basis. Since H(ρρρ) only depend on the eigenvalues, it is not changed by unitary
evolution.

Third, sbuadditivity.
H(ρρρAB) ≤ H(ρρρA) +H(ρρρB) (28)

where ρρρA and ρρρB are obtained by taking the corresponding partial trace of ρρρAB . This is analogous to
classical information in which

H(X,Y ) ≤ H(X) +H(Y ) (29)

Figure 2 helps to see this inequality.

Figure 2: A helpful picture that shows the relationship between different kinds of entropy and
mutual information. This picture is from [1] PHY265 Lecture Notes: Introducing Quantum
Information by professor Alice Quillen.

The equation holds when ρρρAB = ρρρA ⊗ ρρρB , that is, when system A and B are entangled.
Assuming a system A and its environment E are initially unentangled, the second law of thermody-

namics can be derived. In the beginning, the entropy of the whole system is

H(ρρρAE) = H(ρρρA) +H(ρρρE) (30)
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Let the system evolve:
ρρρAE −→ ρρρ′AE = UUUAEρρρAEUUU

−1
AE (31)

Since entropy does not change under unitary evolution, H(ρρρAE) = H(ρρρ′AE), but in most of the time,
the system and the environment become entangled.

H(ρρρA) +H(ρρρE) = H(ρρρ′AE) ≤ H(ρρρ′A) +H(ρρρ′E) (32)

If we think of the sum of the entropy of system A and its environment E as the total entropy, then we
see that the entropy never decrease.
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