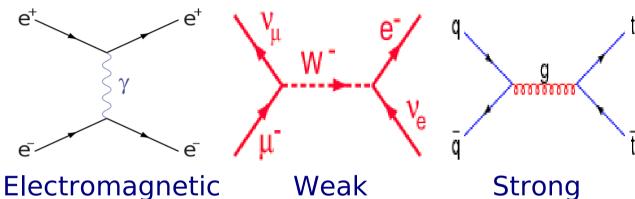

PHY100 — The Nature of the Physical World November 5th, 2008

Lecture 17 More Particle Physics

News

- Exam 2: Wednesday Nov. 12 (next week!)
 - Hoyt at 2pm
 - Bring a calculator
 - I will provide a formula sheet
 - Material: from last exam (Sep. 29 lecture: black body, photoelectric effect) thru last lecture (Oct. 29 nuclear physics + stars)
 - Plus reading material
 - Plus recitations 4-7 and Prob. Sets 5-8.
- I'll be available in my office Monday-Wednesday
 - Or send me email
- No recitations next week


Last layer in the onion? 10⁻¹⁸m

Quantum field theory

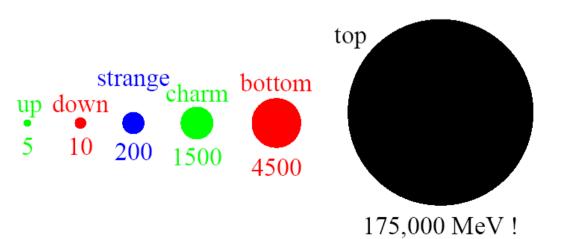
Forces are "carried" or "mediated" by particles: exchange force

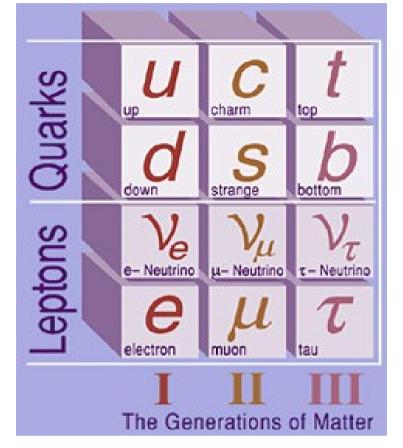
BOSONS force carriers spin = 0, 1, 2,						
Unified Electroweak spin = 1			Strong (color) spin =1			
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge
γ photon	0	0		gluon	0	0
W	80.39	-1				
W ⁺	80.39	+1				
W bosons Z ⁰	91.188	0				
Z boson						

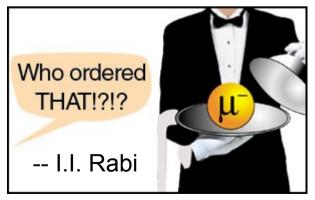
Matter and forces Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.

Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction oweak)	Strong Interaction
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons
Strength at \$\int 10^{-18} m\$	10 ⁻⁴¹	0.8	1	25
3×10 ⁻¹⁷ m	10 ⁻⁴¹	10-4	1	60

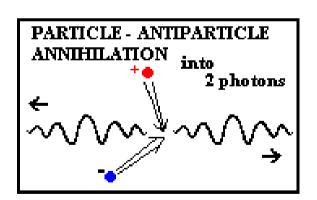

matter constituents **FERMIONS** spin = 1/2, 3/2, 5/2, ...

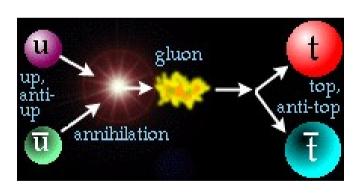

Leptons spin =1/2				
Flavor	Mass GeV/c ²	Electric charge		
ν _L lightest neutrino*	(0-0.13)×10 ⁻⁹	0		
e electron	0.000511	– 1		
₩ middle neutrino*	(0.009-0.13)×10 ⁻⁹	0		
μ muon	0.106	–1		
ν _H heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0		
7 tau	1.777	-1		


Quarks spin =1/2				
Flavor	Approx. Mass GeV/c ²	Electric charge		
u up	0.002	2/3		
d down	0.005	-1/3		
C charm	1.3	2/3		
S strange	0.1	-1/3		
t top	173	2/3		
b bottom	4.2	-1/3		

Three families

- Look at the particle "periodic table"
- It has up and down quarks which make protons and neutrons...
- Which bind with electrons to make atoms...
- And a neutrino, partner with electron...
- So what's all the stuff to the right?
- ► There just appear to be three copies of all the matter that really matters...
- All that distinguishes the "generations" is their mass

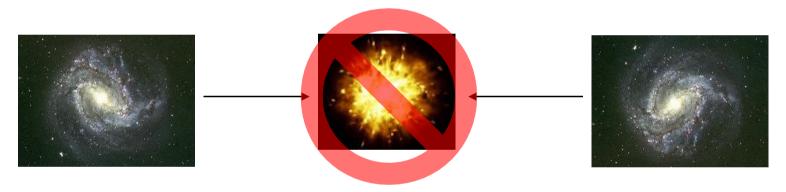


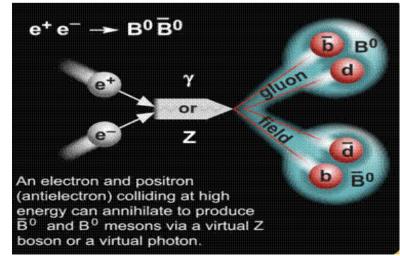


November 5, 2008

Antimatter... is really weird

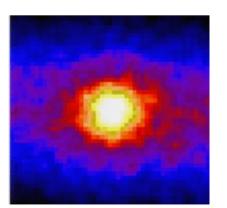
- All particles have antiparticles!
- Antimatter has the same properties as matter
 - Same mass, same spin, same interactions
 - But opposite electric charge
- Has another weird property...
 - It can annihilate with matter to create pure energy!
 - Or, conversely, energy can create matter and antimatter pairs. E=mc²



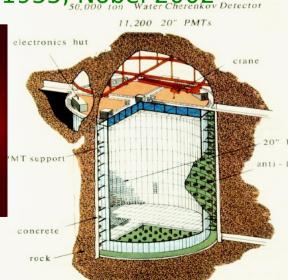

So you might ask: The early Universe had a lot of energy.... where is the antimatter in the Universe?

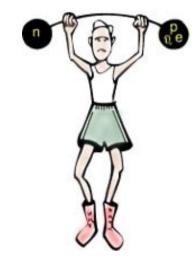
Why is the Universe made of matter?

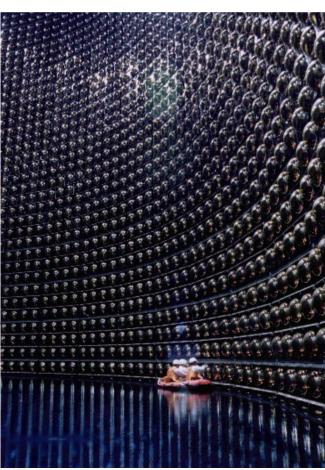
- Good question: if the Universe started with same amount of matter and antimatter, where is the antimatter?
 - Look for annihilations
 - As far away as we can tell, today there aren't big matter and antimatter collisions



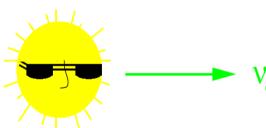
- We don't know why this is true yet!
- Active field of research
- There must be a basic matter-antimatter asymmetry in one of the forces of Nature


How weak are Weak Interactions?


- Weak is, in fact, way weak
- A 3 MeV neutrino produced in fusion from the sun will travel through water, on average
 53 light years, before interacting
 - The 3 MeV positron (anti-matter electron) produced in the same fusion process will travel 3 cm, on average
- Moral: to find neutrinos, you need a lot of neutrinos and a lot of detector!
- Super-Kamiokande: confirms the existence of the sun in neutrino image!
 - Masatoshi Koshiba, UR PhD 1955, Nobel 2002

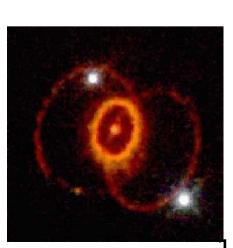


The Sun, imaged in neutrinos, by Super-Kamiokande, and optical Nove



Where are neutrinos found?

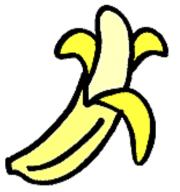
- Anywhere there are weak interactions!
- **▶** The early Universe
 - The heavy things to the right decay (weakly), leaving a waste trail of 100/cm³ of each neutrino species

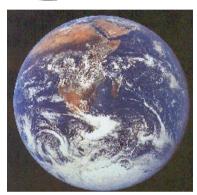

- They are (now) very cold and slow and hard to detect
- But if they have even a very small mass, they make up much of the weight of the Universe

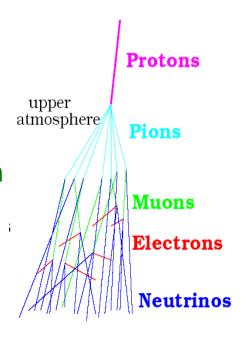
The Generations of Matte

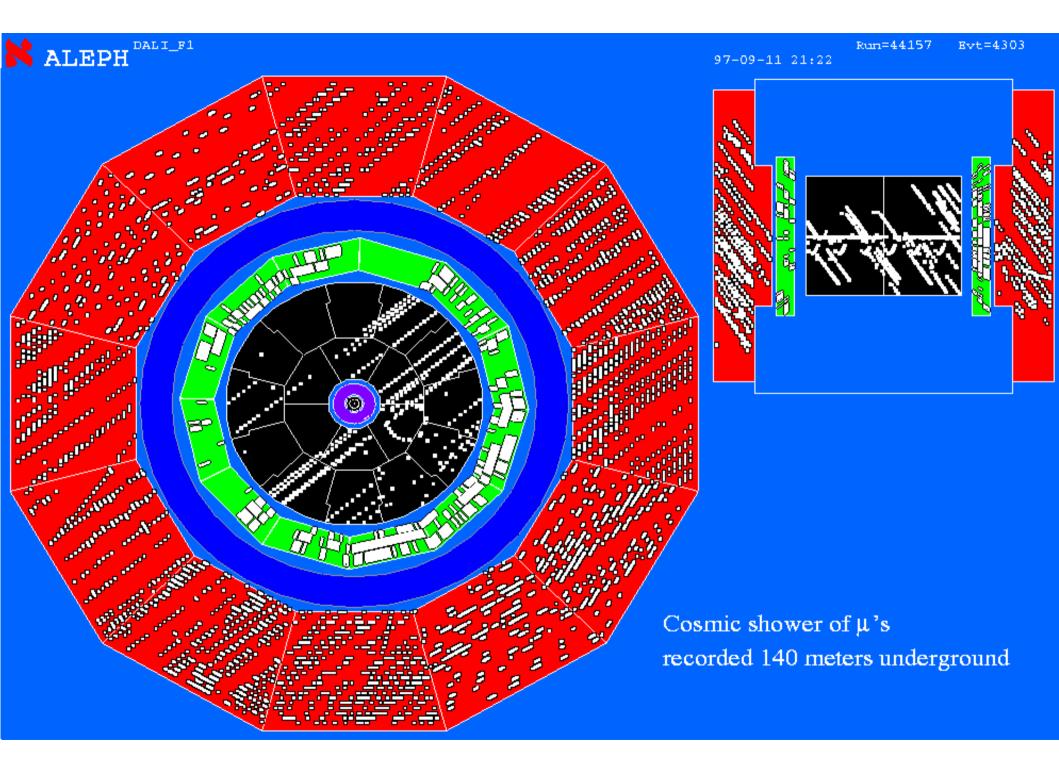
In the sun

- Sun shines by fusion, energy reaching Earth in light and in neutrinos is similar
- 100 billion neutrinos per cm² per second rain on us
- **Supernova 1987A** (150,000 light years away)
 - When it exploded, it released 100 times the neutrinos the sun will emit in its whole lifetime
 - We observed 11 neutrinos in detectors on earth!

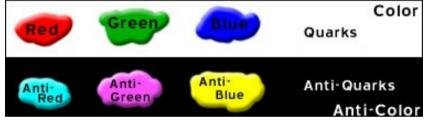


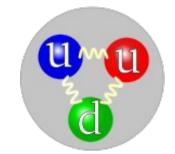

More neutrinos!

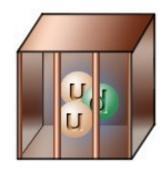

- Bananas?
 - We each contain about 20mg of ⁴⁰K which is unstable and undergoes β decay
 - So each of us emits 0.3 billion neutrinos/sec
- ► For the same reason, the natural radioactivity of the Earth results in 10 million neutrinos per cm² per second here
- Nuclear reactors (6% of energy is anti-neutrinos)
 - Average plant produces 10²⁰ anti-neutrinos/sec


Cosmic Rays

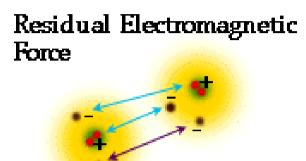
- Cosmic rays from galaxy
- Each particle (mostly protons) has many GeV of energy
- Collisions in upper atmosphere create particles which decay (weakly) to neutrinos
- Can use same technique to produce neutrinos at accelerators


The Strong Force...


- This force is so strong that it can effectively be thought of as glue
 - Force carrier is named the "gluon"
 - Gluons connect to "color"
 - Can think of these colors as combining like light
 - "White" (colorless) things don't feel the strong force



- This is called "confinement"
- The proton is one such "confined combination of quarks"
 - Red+Green+Blue → Colorless
- So two questions follow from this picture
 - What happens if you try to pull things apart?
 - How do protons stick to each other?


Fighting the strong force

- A good model for trying to pull two quarks is like putting energy into a spring
 - When it "breaks" it breaks by creating matter!
 - Separate into two "colorless" objects
- This is why free or bare quarks have never been observed
- The further away the strong force binds two quarks, the stronger it is!
 - Why? Because gluons also feel the strong force, so as distance increases, make more and more gluons
 - and quark+antiquark pairs
- Most of the mass of a proton is actually energy exchanges carried by gluons
 - Most of your mass is strong force dynamics

Quantum Chromodynamics (QCD)

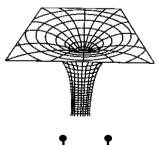
Gluing together protons

- Asking why two (colorless) protons are attracted by the strong force is analogous to asking how molecules bind together
 - Answer is basically the residual electric force over the size of the atom. Only works if nearby

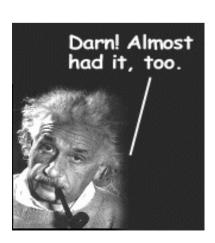
- Answer is exactly the same for strong force
 - Residual strong force, but only if nearby...

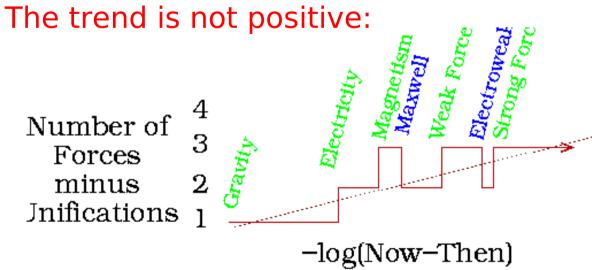
Unification of Forces

Ever since Maxwell, physicists have dreamed of becoming famous by unifying descriptions of fundamental forces

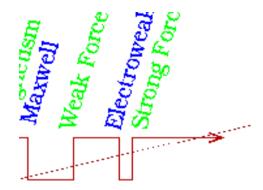

$$\nabla \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$

$$\nabla \cdot \vec{\mathbf{D}} = \rho$$


$$\nabla \times \vec{\mathbf{H}} = \frac{\partial \vec{\mathbf{D}}}{\partial t} + \vec{\mathbf{J}}$$

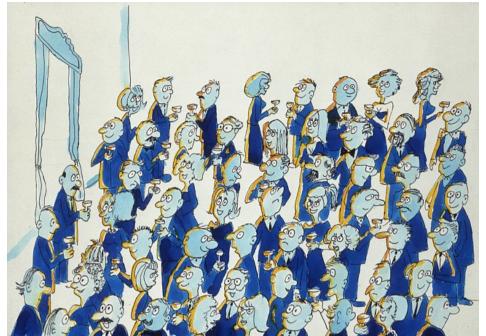

$$\nabla \cdot \vec{\mathbf{B}} = 0$$

- Unfortunately, the history is not encouraging...
- Einstein spent most of his late career attempting to unify gravity and electromagnetism...



Unification of Forces (cont'd)

- The one exception to this trend is "electroweak" unification
 - Weak and electromagnetic force share a common description
 - But a major challenge is understanding how electricity can explain atomic structure, but weak force has apparently little or no role!



- Weak force and electromagnetism are very different because the carriers of the weak force are very massive bosons (W, Z)
 - Can exchange mass over short ranges by the uncertainty principle
 - "Borrow" the energy for a short time
- How to combine a massless photon and massive W and Z?
 - Answer: The Higgs Mechanism

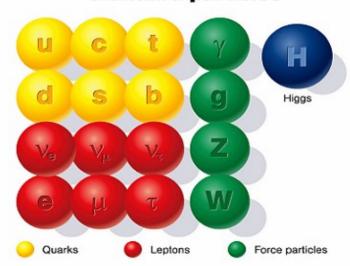
Higgs mechanism

- How does the Higgs work?
- Envisage the motion of people at a party...
 - Outside the party, they are free to walk
 - Inside, limited by crowd

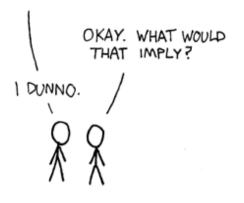
- Now imagine a VIP enters the room...
 - A cluster of people forms around the VIP
 - Her motion is more restricted: more inertia (mass)
 - This is what happens to W, Z
 - But not to photon!

Higgs particles

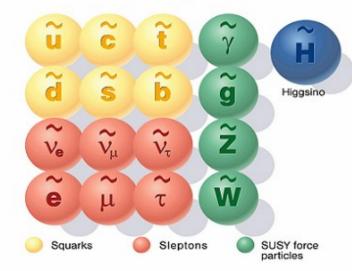
- Ok, so the Higgs mechanism explains why particles acquire mass
- There are also collective excitations of the medium
- Imagine a rumor spreading...
 - The rumor causes people to cluster
 - This strong interaction is like a mass
 - The mechanism itself has mass!
 - A new particle to discover!
- This particle has not yet been observed
 - So we still don't know why particles have a mass!
 - It could be a mechanism different from the Higgs mechanism
 - But something does what the Higgs does
 - Build LHC to continue our quest for the origin of mass



What about gravity?


- Unifying gravity with all the other forces is the purview of an effort in physics called "string theory"
 - It's a very beautiful picture, but it shows the unification dynamics happening at very tiny distances
 - Roughly 10⁻³⁵ m! We can't even conceive of how to see something this small!
- Supersymmetry may get us closer to including gravity, but it is still not a complete theory
 - Like antiparticles but with spin
 - Fermion ↔ Boson

Standard particles



STRING THEORY SUMMARIZED:

I JUST HAD AN AWESOME IDEA. SUPPOSE ALL MATTER AND ENERGY IS MADE OF TINY, VIBRATING "STRINGS."

SUSY particles

