Welcome to Physics 100

Arán García-Bellido
Bausch & Lomb 314
585 276 3422
aran@pas.rochester.edu

http://www.pas.rochester.edu/~aran/class/PHY100_10S
Course outline

- This class is a tour of the Universe as seen by modern science
- Broad range of topics: from classical Physics to modern experiments
- Not comprehensive: focus on main ideas and why we believe them to be valid
- Physics 100 is designed for non-science majors
- The course is conceptual and the use of mathematics will be very limited
- No previous physics instruction is assumed

- Motion
- Gravitation
- Energy
- Forces and fields
- Conservation of energy and momentum
- Constant acceleration in motion
- Rotational motion
- Electricity and magnetism
- Waves, light, radiation
- The atomic model
- Nuclear forces
- Fusion and fission
- Quantum mechanics
- Heisenberg's Uncertainty Principle
- Special theory of Relativity
- General theory of Relativity
- The Standard Model of particle physics
- Quarks, leptons, gluons, baryons, etc.
- The Big Bang
- Dark matter
- Stellar evolution
- Cosmic microwave background
- Inflation
- ... and more!
What I expect of you

- You should read the chapters in Hobson and do the weekly **problem sets** (not graded)
- Attend the **recitations**
 - will have exercises and discussions, work in groups, guided by TA
 - help you check you understand all the concepts and iron out doubts
 - material covered there will be included in exams
- End of semester **presentation**
 - form groups of ~5 students, choose topic from list
 - make a lecture for all the class: evaluate each other
- Participate in class! Stop me if you don't understand something!
- Let me know if there are any subjects you'd like to hear about
Grading

- There will be two exams (Feb. 17 and Mar. 31) and a final
- I will not give make up exams
 - If you miss two exams, contact me before you miss the second!
- I will use the best numerical average from the following schemes:

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Exam1</th>
<th>Exam2</th>
<th>Final</th>
<th>Present.</th>
<th>Recitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24%</td>
<td>24%</td>
<td>24%</td>
<td>20%</td>
<td>8%</td>
</tr>
<tr>
<td>2</td>
<td>32%</td>
<td>0%</td>
<td>40%</td>
<td>20%</td>
<td>8%</td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>32%</td>
<td>40%</td>
<td>20%</td>
<td>8%</td>
</tr>
</tbody>
</table>

- You will receive 1 out of the 8 possible points for each recitation you attend
- Problem sets will not have to be handed in, solutions will be posted the next week. I could ask that you hand them in for credit, if it is needed to keep the class on track
- I will not grade on a curve
- I will assign a letter grade to the numerical grade as calculated above
A little info...

Please fill out the forms and return next Wednesday:

<table>
<thead>
<tr>
<th>NAME:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>email:</td>
<td></td>
</tr>
<tr>
<td>Year: Fr/So/Jr/Sr?</td>
<td></td>
</tr>
<tr>
<td>Did you receive the email sent yesterday to the class mailing list?: Yes/No</td>
<td></td>
</tr>
<tr>
<td>Major/main career interest:</td>
<td></td>
</tr>
<tr>
<td>What interests you about Physics (why are you in this course)?:</td>
<td></td>
</tr>
</tbody>
</table>
Schedule/Syllabus - part 1

1. **Wed, Jan 13:** Introduction to class, nature of science, scales in the universe
 Reading in Hobson: Chapter 1 (p.2-25) and sections 2.4 and 2.5 (p.37-41)

2. **Wed, Jan 20:** Fundamental physical quantities and Newton's laws
 Reading in Hobson: Chapters 3 & 4 (p.52-84)

3. **Mon, Jan 25:** Newton's laws, gravitational and electrostatic forces, fields
 Reading in Hobson: Sections 5.1-5.2 (p.90-98), 8.4-8.5 (p.171-174), 8.8 (p.181-184)

4. **Wed, Jan 27:** Fields, relativity
 Reading in Hobson: Sections 10.1-10.6 (p.220-235)

5. **Mon, Feb 1:** Relativity
 Reading in Hobson: Sections 3.4 (p.59-60), 10.7-10.8 (p.235-242), 11.1 (p.248-254)

6. **Wed, Feb 3:** Magnetism, Maxwell's equations, light
 Reading in Hobson: Section 8.8 (p. 181-184), Section 9.1 (p. 190-194)

7. **Mon, Feb 8:** Light, electromagnetic radiation, waves
 Reading in Hobson: Sections 8.1-8.3 (p. 162-171), sections 9.2-9.4 (p.195-200)

8. **Wed, Feb 10:** Blackbody radiation, photoelectric effect, quanta of light
 TBA

9. **Mon, Feb 15:** DeBroglie matter waves, Bohr model of atom
 Reading from Hobson: Chapter 13 (p. 298-316)

Wed, Feb 17: EXAM 1
10. **Mon, Feb 22:** Bohr model, Schroedinger's equation, rise of quantum mechanics
 Reading from Hobson: Sections 14.6-14.7 (p. 338-347)

11. **Wed, Feb 24:** Quantum uncertainty
 TBA

12. **Mon, Mar 1:** Quantum uncertainty, chemistry
 Reading from Hobson: Sections 14.6-14.7 (p. 338-347)

13. **Wed, Mar 3:** Rutherford scattering, nuclear physics
 Reading in Hobson: Chap 2 (p.29-46), Sections 8.4-8.7 (p. 171-180), Chap 15 (p. 354-376)

14. **Mon, Mar 15:** Nuclear physics
 Reading from Hobson: Chapter 16 (p.380-404)

15. **Wed, Mar 17:** Stars
 Reading from Hobson: Secs 5.1-5.6 (p. 90-110), Sec 11.1 (p. 248-254),
 review sections 16.1-16.4 (p. 380-387)

16. **Mon, Mar 22:** Quantum fields and the nature of forces
 Reading from Hobson: Sections 18.1-18.3 (p. 439-449)

17. **Wed, Mar 24:** Standard model of particle physics
 Reading from Hobson: Sections 18.4-18.5 (p. 449-459)

18. **Mon, Mar 29:** Particles and cosmology
 Reading from Hobson: Sections 11.2-11.7 (p. 254-268)

Wed, Mar 31: EXAM 2
19. **Mon, Apr 5**: Big Bang Cosmology
 TBA

20. **Wed, Apr 7**: More Cosmology: inflation, dark matter
 TBA

21. **Mon, Apr 12**: History of the Universe
 TBA

22. **Wed, Apr 14**: Student presentations

23. **Mon, Apr 29**: Student presentations

24. **Wed, Apr 21**: Student presentations

25. **Mon, Apr 26**: Student presentations

Tue, May 4, 4pm: Final Exam (tentative)