Waves and Modern Physics

$$
\text { PHY } 123 \text { - Spring } 2012
$$

Prof. Antonio Badolato
 Office: BL 158

Email: badolato@pas.rochester.edu

Course Web Site

http://www.pas.rochester.edu/~badolato/PHY_123/PHY_123.html

Chapter 15

Wave Motion

15-3 Energy Transported by Waves

As waves travel through a medium, the energy is transferred as vibrational energy from particle to particle. For a harmonic wave the particles move in a SHM.

$$
E=\frac{1}{2} k A^{2}=2 \pi^{2} m f^{2} A^{2}
$$

15-3 Energy Transported by Waves

The energy carried by a one-dimensional string on a full wavelength is

$$
m=\mu \lambda \quad E_{\lambda}=\frac{1}{2} \mu \lambda \omega^{2} A^{2}
$$

E_{λ} is the work done by the driving force per cycle. The average power (i.e. the power per cycle) is

$$
\bar{P}=\frac{E_{\lambda}}{T}=E_{\lambda} f=\frac{1}{2} \mu \omega^{2} A^{2} v=2 \pi^{2} \mu f^{2} A^{2} v
$$

15-3 Energy Transported by Waves

In three dimensions, assuming the entire medium has the same density ρ, we find:

$$
\bar{P}=\frac{E_{\lambda}}{T}=E_{\lambda} f=\frac{1}{2}(\rho S) \omega^{2} A^{2} v=2 \pi^{2}(\rho S) f^{2} A^{2} v
$$

and the intensity

$$
I=\frac{\bar{P}}{S}=2 \pi^{2} v \rho f^{2} A^{2}
$$

Therefore, the intensity is proportional to the square of the frequency and to the square of the amplitude.

15-3 Energy Transported by Waves

If a wave is able to spread out threedimensionally from its source, and the medium is uniform, the wave is spherical.

Just from geometrical considerations, as long as the power output is constant, we see:

$$
I \propto \frac{1}{r^{2}}
$$

15-4 Mathematical Representation of a Traveling Wave

Suppose the shape of a wave is given by:

$$
D(x)=A \sin \frac{2 \pi}{\lambda} x
$$

15-4 Mathematical Representation of a Traveling Wave

After a time \boldsymbol{t}, the wave crest has traveled a distance $v t$, so we write:

$$
D(x, t)=A \sin \left[\frac{2 \pi}{\lambda}(x-v t)\right] .
$$

Or: $\quad D(x, t)=A \sin (k x-\omega t)$,
with $\omega=2 \pi f, k=\frac{2 \pi}{\lambda}$.

Example:

A transverse wave travels to the right along a string with a speed $2.0 \mathrm{~m} / \mathrm{s}$. At $t=0$ the shape of wave is given by the function

$$
D(x, t)=-0.2 \cos (\pi x)
$$

a) Is it a harmonic wave?
b) Determine amplitude, wave number, wavelength.
c) Determine a formula for the wave at any time t assuming there are no frictional losses.
d) Determine the angular frequency and frequency.

Example:

A transverse wave travels to the right along a string with a speed $2.0 \mathrm{~m} / \mathrm{s}$. At $t=0$ the shape of wave is given by the function

$$
D(x, t)=-0.2 \cos (\pi x)
$$

a) Is it a harmonic wave?

Yes. It is easy to plot the wave. Rewriting:

$$
\begin{aligned}
D(x, t) & =-0.2 \cos (\pi x)=0.2 \sin \left(\pi x-\frac{\pi}{2}\right) \\
& =0.2 \sin \left(\frac{2 \pi}{2} x-\frac{\pi}{2}\right)
\end{aligned}
$$

Example:

A transverse wave travels to the right along a string with a speed $2.0 \mathrm{~m} / \mathrm{s}$. At $t=0$ the shape of wave is given by the function

$$
D(x, t)=-0.2 \cos (\pi x)
$$

a) Is it a harmonic wave?
b) Determine amplitude, wave number, wavelength.

$$
D(x, t)=0.2 \sin \left(\frac{2 \pi}{2} x-\frac{\pi}{2}\right)
$$

$$
A=0.2 \mathrm{~m} ; \quad k=\pi \mathrm{m}^{-1} ; \quad \lambda=2 \mathrm{~m}
$$

Example:

A transverse wave travels to the right along a string with a speed $2.0 \mathrm{~m} / \mathrm{s}$. At $t=0$ the shape of wave is given by the function

$$
D(x, t)=-0.2 \cos (\pi x)
$$

a) Is it a harmonic wave?
b) Determine amplitude, wave number, wavelength.
c) Determine a formula for the wave at any time t assuming there are no frictional losses.
d) Determine the angular frequency and frequency.

$$
\begin{aligned}
& D(x, t)=0.2 \sin \left(\frac{2 \pi}{2} x-v k t-\frac{\pi}{2}\right) \\
& \omega=v k=2 \pi \mathrm{rad} / \mathrm{s} ; \quad f=\frac{\omega}{2 \pi}=1 \mathrm{~Hz}
\end{aligned}
$$

One-Dimensional Wave Equation

$$
\frac{\partial^{2} D}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} D}{\partial t^{2}}=0
$$

General Solution $D(x, t)=f(x-v t)+g(x+v t)$

Harmonic Wave
$D(x, t)=A \sin (k x-\omega t)$

Example 15-6:

Verify that the harmonic wave satisfies the wave equation

$$
\frac{\partial^{2} D}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} D}{\partial t^{2}}=0
$$

$$
D(x, t)=A \sin (k x-\omega t)
$$

15-6 The Principle of Superposition

The Wave Equation is Linear => Superposition Principle

Fourier's theorem:

Any complex periodic wave can be written as the sum of sinusoidal waves of different amplitudes, frequencies, and phases.

15-6 The Principle of Superposition

Conceptual Example 15-7:
Making a square wave.
At $\boldsymbol{t}=0$, three waves are given by $D_{1}=A \cos k x$,
$D_{2}=-1 / 3 A \cos 3 k x$,
$D_{3}=1 / 5 A \cos 5 k x$.
(These three waves are the first three Fourier components of a "square wave.")

The Wave Equation is Linear => Superposition Principle

The Wave Equation is Linear => Superposition Principle

