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University of Rochester 
Department of Physics and Astronomy 

Physics123, Spring 2012 
 

Homework 9 - Solutions 
 
Problem 9.1 
 

Estimate what % of emitted sunlight energy is in the visible range (from 400 nm to 700 
nm). Use Plank’s radiation formula and numerical integration assuming that all energy is 
for the most part contained in the range from 20 nm to 2000 nm.  
 
Solution 9.1 
 

Planck’s radiation formula ( )I Tλ,  was calculated for a temperature of 6000 K, for 
wavelengths from 20 nm to 2000 nm. To estimate the % of emitted sunlight that is in the 
visible, this ratio was calculated by numeric integration.  The details are in the 
spreadsheet. 

( )

( )

700nm

400nm
2000nm

20nm

,
%visible 0.42

,

I T d

I T d

λ λ

λ λ
= =

∫

∫
 

 
So our estimate is that 42% of emitted sunlight is in the visible wavelengths. 
 
 
 
Problem 9.2 
 

A photon with energy 2.28 eV is absorbed by a hydrogen atom. Find (a) the minimum n 
for a hydrogen atom that can be ionized by such a photon and (b) the speed of the 
electron released from the state in part (a) when it is far from the nucleus. 
 
Solution 9.2 
 

a) 13.6 eV / (2)2 = 3.40 eV is required to ionize a hydrogen atom from state n = 2. So 
while the photon cannot ionize a hydrogen atom pre-excited to n = 2, it can ionize a 
hydrogen atom in the n = 3 level, that is, with energy – 1.51 eV. 
 
b) The electron thus freed can have kinetic energy  Ke = 2.28 eV – 1.51 eV = 0.769 eV, 
which corresponds to v = 5.20 × 105 m/s. 
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Problem 9.3 
 

Construct the energy-level diagram (like Fig. 37-26) for (a) He+ ion and (b) doubly 
ionized lithium Li2+. 
 
 
Solution 9.3 
 

(a)  Singly ionized helium is like hydrogen, except that 
there are two positive charges (Z = 2) in the nucleus. The 
square of the product of the positive and negative 
charges appears in the energy term for the energy levels.  
We can use the results for hydrogen, if we replace e2 by 
Ze2: 
 
 

  

En = −
Z 2 13.6eV( )

n2
= −

22 13.6eV( )
n2

= −
54.4eV( )

n2

E1 = −54.5eV,  E2 = −13.6eV,  E3 = −6.0eV,  E4 = −3.4eV
 

 
 
(b)  Doubly ionized lithium is like hydrogen, except that there are three positive charges 
(Z = 3) in the nucleus.  The square of the product of the positive and negative charges 
appears in the energy term for the energy levels.  We 
can use the results for hydrogen, if we replace e2 by 
Ze2: 
 
 

 

  

En = −
Z 2 13.6eV( )

n2
= −

32 13.6eV( )
n2

= −
122.4eV( )

n2

E1 = −122eV,  E2 = −30.6eV,  E3 = −13.6eV,
E4 = −7.65eV

 

 
 
 
 
Problem 9.4 
 

Electron accelerated by a potential difference of 12.3 V pass through a gas of hydrogen 
atoms at room temperature. Using the Bohr model, what wavelengths of light will be 
emitted?  
 
Solution 9.4 
 

The potential difference gives the electrons a kinetic energy of 12.3 eV, so it is possible 
to provide this much energy to the hydrogen atom through collisions.  From the ground 
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state, the maximum energy of the atom is  −13.6 eV + 12.3 eV = −1.3 eV.   From the energy 
level diagram, Figure 37-26, we see that this means the atom could be excited to the n = 3 
state, so the possible transitions when the atom returns to the ground state are n = 3 to n = 
2, n = 3 to n = 1, and n = 2 to n = 1.  We calculate the wavelengths from the equation 
above Eq. 37-15. 
 

  
   
λ3→2 =

hc
E3 − E2( ) =

1240eVinm
−1.5 eV − −3.4 eV( )⎡⎣ ⎤⎦

= 650 nm  

  
   
λ3→1 =

hc
E3 − E1( ) =

1240eVinm
−1.5 eV − −13.6 eV( )⎡⎣ ⎤⎦

= 102 nm  

  
   
λ2→1 =

hc
E2 − E1( ) =

1240eVinm
−3.4 eV − −13.6 eV( )⎡⎣ ⎤⎦

= 122 nm  

 
Problem 9.5 
 

In a double-slit experiment on electrons (or photons), suppose that we use indicators to 
determine which slit each electron went through. These indicators must tell us the y 
coordinate to within d/2, where d is the distance between slits. Use the uncertainty 
principle to show that the interference pattern will be destroyed. [Note: First show that 
the angle θ between maxima and minima of the interference pattern is given by λ/(2d). 
Let us assume that the electron has an initial x momentum , px, and that the angles are 
small, then we replace sin θ by θ.] 
 
 
 
 
 
 
 
 
 
 
 
 
Solution 9.5 
 

Let us assume that the electron has an initial x momentum ,xp  so that it has a wavelength 
of .xh pλ =   The maxima of the double-slit interference pattern occur at locations 
satisfying Eq. 34-2a, sin ,  0,1,2, .d m mθ λ= = L   If the angles are small, then we replace 
sinθ  by θ , and so the maxima are given by .m dθ λ=   The angular separation of the 
maxima is then ,dθ λΔ =  and the angular separation between a maximum and the 
adjacent minimum is 2 .dθ λΔ =   The separation of a maximum and the adjacent 
minimum on the screen is then screen 2 ,y dλΔ = l  where l  is the distance from the slits to 
the detection screen.  This means that many electrons hit the screen at a maximum 
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position, and very few electrons hit the screen a distance 2dλl  to either side of that 
maximum position. 
 
If the particular slit that an electron passes through is known, then yΔ  for the electrons at 

the location of the slits is 2.d   The uncertainty principle says 
1

slits 2

.y
hp

y d dπ
Δ ≥ = =

Δ
h h   

We assume that yp  for the electron must be at least that big.  Because of this uncertainty 
in y momentum, the electron has an uncertainty in its location on the screen, as 
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x
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λ
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   Since this is about the same size as the separation 

between maxima and minima, the interference pattern will be “destroyed.”  The electrons 
will not be grouped near the maxima locations.  They will instead be “spread out” on the 
screen, and no interference pattern will be visible. 
 


