1. General Properties of Magnets
 (a) Draw the force acting on each end of each magnet shown. Indicate direction and make sure that if there is any difference in the strength of the forces, the lengths of your arrows reflect this.

 (a) i
 (b) ii
 (c) iii

 i. Parallel
 ii. Anti-Parallel
 iii. Perpendicular

(b) Draw the magnetic field lines for a single bar magnet. Label the poles and include enough lines to clearly show the shape of the field.

(c) What are the key differences between the field lines of magnets such as these, and the electric field lines we found in electrostatics? What are the key similarities?

(d) Can there ever be a north magnetic pole by itself? Which part of your previous answer is affected by this?

2. Right Hand Rule: You are given 2 of the 3 vectors \(\vec{I}(\vec{v}), \vec{B}, \vec{F} \) for each charge in a field below. Identify the direction of the 3rd.
3. What are the forces between each set of wires shown below?

- (a) Equal, Parallel
- (b) Unequal, Parallel
- (c) Equal, Antiparallel

4. Consider the wire loop in the constant, uniform magnetic field pictured. The magnetic field does not extend outside of the boundary line shown. The velocity is a constant. The position shown is for $t = 0$.

(a) Positive charge, find \vec{v}

(b) Negative charge, find \vec{F}

(c) Positive charge, find applied \vec{B}

(d) Negative charge, find \vec{F}
What is the area of the loop? Make the area a vector by picking a direction (no correct/incorrect answer, just clearly indicate what you are defining to be positive).

What is the magnetic flux through the loop at time $t = 0$?

At what time is the magnetic flux through the loop 0? Call this time $t = t_2$

What is the magnetic flux through the loop at time $t_1 = \frac{1}{2}t_2$?

What is the average $\frac{d\Phi_B}{dt}$ from $t = 0$ to $t = t_2$? What is the \mathcal{E}_{ind}?

What is the average $\frac{d\Phi_B}{dt}$ from $t = 0$ to $t = t_1$? What is the \mathcal{E}_{ind}?

What is the average $\frac{d\Phi_B}{dt}$ from $t = t_1$ to $t = t_2$? What is the \mathcal{E}_{ind}?

Consider the system pictured. We have a thin sheet of conductor which carries a total current \vec{I} spread evenly across it. If it helps, think of this as a large number of thin wires packed together side by side. This sheet is ℓ wide. We see the system from 2 different perspectives. In the top perspective we are looking at the sheet edge on and the current is traveling into the page. In the second we are looking at the sheet from the top and the current is traveling down towards the bottom of the page. See the coordinate system drawn in each if you need to get a sense of the rotation. We see in the bottom perspective that the conducting sheet extends off to infinity up and down, allowing a continuous flow of current rather than a buildup of charge.

In both perspectives, we have labeled a point P to be considered in the following questions. This point is located halfway between the two edges of the sheet, and a distance $y \ll \ell$ above the sheet.

You should have no need to perform integrals for any part of this problem (tho it may be possible to interpret some of your steps as extremely simple integrals).
(a) What is the current per unit width flowing through the sheet?

(b) Why is it important that $y \ll \ell$?

(c) What is the magnetic field at point P?

(d) If a particle of charge $q < 0$ were placed at rest at point P, what force would it feel? What if it were moving with velocity $\vec{v} = \hat{v}\hat{z}$?

(e) Imagine that, instead of extending off to infinity this sheet is now only of length 2ℓ, and instead of lying flat on the page the two new ends were connected.
 i. Draw the new system. Label the current. Forget about point P.
 ii. What system that we considered in lectures/text is this now similar to?

6. Consider the nested coils pictured. The inside coil is square rather than circular. You can assume that all of the flux from the inside coil passes through the outside coil. The inside coil has N_1 loops and each side of the square is ℓ. Assume the loops in both coils are wrapped tightly as in previous examples.
5 (a) What is the magnetic field inside coil 1?
(b) What is the magnetic flux through each loop of coil 1? The total flux?
(c) What is the mutual inductance between the two coils?
(d) What is the induced \(E \) in coil 2?

7. In the simple circuit below, the capacitor starts in a charged state with charge \(Q \).

Plot the general behavior of the charge on the capacitor as a function of time when the switch is closed. Describe conceptually why this happens, and the role played by both the capacitor and inductor.

8. Consider a circular capacitor of radius \(R \) filled with a uniform electric field. The capacitor is being charged at a rate such that the electric field varies uniformly in time, \(\vec{E} = E_0 t \hat{z} \).
(a) What is the flux through a loop of radius $r < R$?
(b) What is the change in flux through that loop?
(c) What is the magnetic field inside the capacitor, as a function of r?

9. Extra Credit: An astronaut is floating outside the space shuttle performing an EVA (Extra Vehicular Activity) to fix some expensive telescope. One of her “friends” gets clever and shines a laser pointer at her. The laser beam has a power of 15W and is 5mm in diameter.

(a) What is the radiation pressure applied by the laser beam assuming the light is completely absorbed?
(b) And if it is completely reflected?
(c) If the shuttle is 100,000kg and the astronaut with her suit is 100kg. What is the force of gravity pulling her towards the shuttle when she is 10m away? Use $F_g = -G \frac{m_1 m_2}{r^2} \hat{j}$ and assume that
\[G = 7 \times 10^{-11} \frac{N\cdot m^2}{kg^2}. \]

(d) Does she accelerate towards or away from the shuttle?