Exam 2

Phy122 Electricity and Magnetism July 22 2010

Name:_____

You have until 11:45 to complete this exam. You are allowed one index card for formulas and notes. You may have a calculator (but it probably won't help you) but no cell phones or other electronic devices are allowed. Please ask me if any questions come up during the test. I hope you do well!

- 1. Multiple Choice. [30 Points] Circle the correct answers.
 - (a) A parallel plate capacitor has charge Q_o. The separation between the plates of the parallel-plate capacitor is then tripled, while still connected to the battery. The charge will now be:
 - i. $3 Q_{\circ}$ ii. $1/3 Q_{\circ}$ iii. $9 Q_{\circ}$ iv. Q_{\circ}
 - (b) What value might we assign to the dielectric constant for a good conductor?
 - i. 0
 - ii. 1
 - iii. 4π
 - iv. ∞
 - (c) If the resistance of a heater (which plugs into a wall outlet) is doubled, its heating power will:
 - i. be doubled
 - ii. be halved
 - iii. be quadrupled
 - iv. remain unchanged
 - (d) You have two identical light bulbs. You hook up one to a DC power supply, with voltage of 220V, and the other to the outlet, which has a rms voltage of 220V. What do you notice?
 - i. The bulb with DC is brighter.
 - ii. The bulb with AC is brighter.
 - iii. They are the same brightness.
 - iv. It is impossible to tell.

- (e) The ideal ammeter / voltmeter would have
 - i. infinite resistance / infinite resistance
 - ii. infinite resistance / zero resistance
 - iii. zero resistance / zero resistance
 - iv. zero resistance / infinite resistance
- (f) Which is more likely to kill you?
 - i. 220 V and $1m\Omega$
 - ii. 440V and 1Ω
 - iii. 1000V and $1M\Omega$
 - iv. 4000V and 1Ω
- 2. [10 points] Suppose you want to make a uniform cylindrical wire resistor out of 1×10^{-3} m³ of iron (resistivity $\rho = 1 \times 10^{-7}$). If the wire is to have a resistance of 10Ω , what will be the length *l* and radius *r* of this wire?

- 3. [20 points] Two capacitors of capacitance C1 and C2 are connected in parallel to a battery which maintains a potential difference V.
 - (a) what is the equivalent capacitance C_{eq} of the combination?
 - (b) What is the potential difference V_1 and V_2 across each capacitor?
 - (c) what is the charge Q_1 and Q_2 on each capacitor?
 - (d) repeat parts a, b, and c for the situation where the capacitors are in series.

- 4. [10 pts] A light bulb (with resistance R) is connected in series with an uncharged capacitor (capacitance C) and a battery (voltage V). At time t=0, a switch is closed and the circuit is complete.
 - (a) Write an expression P(t) in terms of V, R,and C that describes how the power out of the bulb changes with time.
 - (b) Is the light getting brighter or dimmer?

- 5. [30 points] Consider the circuit shown below. All of the resistors have the same resistance, R. The batteries have voltages V₁ and V₂ as shown.
 - (a) This problem can be greatly simplified. Find a relation between the currents (hint: symmetry and conservation of charge might be useful) so that there are only two distinct currents. Call these currents I_a and I_b and draw the circuit again, with these currents labeled.
 - (b) Use Kirchhoff's rules to set up the equations you will need to find these two unknown currents. (note: if you didn't get part (a), just solve using all 6 branches. It will be a mess but at least I can give you points for understanding Kirchhoff's rules)
 - (c) Solve the system of equations and find the potential difference across the top resistor.

Bonus Questions: These bonus questions will add on to this test score. If you happen to get over 100, then those points can go toward your other test score.

- 1. [10 points] A spherical capacitor consists of a spherical conducting shell of radius *b* and charge -Q that is concentric with a smaller conducting sphere of radius *a* and charge +Q. Show that its capacitance is $C = \frac{ab}{k(b-a)}$ (where *k* is the electric constant in Coulombs law)
- [5 points] A cube of wire has 12 resistors: one on each "edge", as shown. All of the resistors have the same resistance *R*. A current *I* flows through the cube, 'entering' at one corner and going out the far opposite corner. The current through the a given resistor can have one of two values (by symmetry). What are those two values?