Exam 2

Phy122 Electricity and Magnetism
Name: \qquad July 222010

You have until 11:45 to complete this exam. You are allowed one index card for formulas and notes. You may have a calculator (but it probably won't help you) but no cell phones or other electronic devices are allowed. Please ask me if any questions come up during the test. I hope you do well!

1. Multiple Choice. [30 Points] Circle the correct answers.
(a) A parallel plate capacitor has charge Q_{0}. The separation between the plates of the parallel-plate capacitor is then tripled, while still connected to the battery. The charge will now be:
i. $3 Q_{0}$
ii. $1 / 3 Q_{0}$
iii. $9 Q_{0}$
iv. Q_{0}
(b) What value might we assign to the dielectric constant for a good conductor?
i. 0
ii. 1
iii. 4π
iv. ∞
(c) If the resistance of a heater (which plugs into a wall outlet) is doubled, its heating power will:
i. be doubled
ii. be halved
iii. be quadrupled
iv. remain unchanged
(d) You have two identical light bulbs. You hook up one to a DC power supply, with voltage of 220 V , and the other to the outlet, which has a rms voltage of 220 V . What do you notice?
i. The bulb with DC is brighter.
ii. The bulb with AC is brighter.
iii. They are the same brightness.
iv. It is impossible to tell.
(e) The ideal ammeter / voltmeter would have
i. infinite resistance / infinite resistance
ii. infinite resistance / zero resistance
iii. zero resistance / zero resistance
iv. zero resistance / infinite resistance
(f) Which is more likely to kill you?
i. 220 V and $1 \mathrm{~m} \Omega$
ii. 440 V and 1Ω
iii. 1000 V and $1 \mathrm{M} \Omega$
iv. 4000 V and 1Ω
2. [10 points] Suppose you want to make a uniform cylindrical wire resistor out of $1 \times 10^{-3} \mathrm{~m}^{3}$ of iron (resistivity $\rho=1 \times 10^{-7}$). If the wire is to have a resistance of 10Ω, what will be the length I and radius r of this wire?
3. [20 points] Two capacitors of capacitance C 1 and C 2 are connected in parallel to a battery which maintains a potential difference V .
(a) what is the equivalent capacitance $\mathrm{C}_{\text {eq }}$ of the combination?
(b) What is the potential difference V_{1} and V_{2} across each capacitor?
(c) what is the charge Q_{1} and Q_{2} on each capacitor?
(d) repeat parts a, b, and c for the situation where the capacitors are in series.
4. [10 pts] A light bulb (with resistance R) is connected in series with an uncharged capacitor (capacitance C) and a battery (voltage V). At time $\mathrm{t}=0$, a switch is closed and the circuit is complete.
(a) Write an expression $P(t)$ in terms of V, R, and C that describes how the power out of the bulb changes with time.
(b) Is the light getting brighter or dimmer?
5. [30 points] Consider the circuit shown below. All of the resistors have the same resistance, R. The batteries have voltages V_{1} and V_{2} as shown.
(a) This problem can be greatly simplified. Find a relation between the currents (hint: symmetry and conservation of charge might be useful) so that there are only two distinct currents. Call these currents I_{a} and I_{b} and draw the circuit again, with these currents labeled.
(b) Use Kirchhoff's rules to set up the equations you will need to find these two unknown currents. (note: if you didn't get part (a), just solve using all 6 branches. It will be a mess but at least I can give you points for understanding Kirchhoff's rules)
(c) Solve the system of equations and find the potential difference across the top resistor.

Bonus Questions: These bonus questions will add on to this test score. If you happen to get over 100, then those points can go toward your other test score.

1. [10 points] A spherical capacitor consists of a spherical conducting shell of radius b and charge $-Q$ that is concentric with a smaller conducting sphere of radius a and charge +Q . Show that its capacitance is $C=\frac{a b}{k(b-a)} \quad$ (where k is the electric constant in Coulombs law)
2. [5 points] A cube of wire has 12 resistors: one on each "edge", as shown. All of the resistors have the same resistance \boldsymbol{R}. A current \boldsymbol{I} flows through the cube, 'entering' at one corner and going out the far opposite corner. The current through the a given resistor can have one of two values (by symmetry). What are those two values?
