Magnetoism

Imagine:

what happens?

they repel!

Discuss:

Electrostatic

Explain why charges repel - using - there are just as many resulting + charges, as many e- in any given segment - wire is neutral!

now consider:

What is happening? Magnetic fields + forces.

Source of E field: pt charges

Source of magnetic field: current (ie moving charges)

A compass measures a magnetic field. If you moved field near wire, what would you find?
magnetic field lines are curly!

recall: E field lines are guided by charge would move.
What if I put a charge on a mag. field line? nothing happens. What about opening example? Force was felt. Why?
there was moving charge

\[\mathbf{F}_{\text{mag}} = q (\mathbf{V} \times \mathbf{B}) \]

in general, Lorentz force law
\[\mathbf{F} = q \mathbf{E} + q (\mathbf{V} \times \mathbf{B}) \]

RHR: 1) point 4 fingers in direction of \(\mathbf{V} \)
2) curl to dir. of \(\mathbf{B} \)
3) \(\mathbf{F} \) points in dir. of thumb.

\[\mathbf{D} = \mathbf{A} \times \mathbf{E} \]

direction of \(\mathbf{D} \)?
what is the force on a wire?

A current can be thought of as a line charge moving along with a velocity \(\vec{v} \)

\[
I = \frac{\Delta Q}{\Delta t} = \lambda \Delta t \nabla \\
\vec{E} = \nabla \phi \\
\vec{v} = \frac{\vec{E}}{\lambda}
\]

\[
\vec{F} = q \vec{E} \times \vec{B} = q \frac{\vec{E} \times \vec{B}}{\lambda}
\]

\[
\vec{F} = I \vec{L} \times \vec{B} \quad \text{(typically, used in books)}
\]

Example 1. A doubly charged helium ion, whose mass is 6.6 \(\times \) 10^-27 kg, is accel. by a volts of 2700 V. (a) what will be its radius of curvature if it move in plane 1 to a uniform 0.840 T field? (b) what is its speed of rotation in revolutions per second (c) potential \(\rightarrow \) kinetic energies

\[
\frac{q}{m} = \frac{1}{2} mv^2 + \phi v \\
v = \sqrt{\frac{2q\phi}{m}}
\]
\[F_{mg} = q \vec{V} \times \vec{B} \quad \sin \theta = \sin 90^\circ = 1 \]

\[|F| = qUV \]

Circular motion:
\[F = \frac{\mu mV^2}{r} \]

\[qUV = \frac{mv^2}{r} \]

\[r = \frac{mv}{qB} = \frac{m}{qB} \sqrt{\frac{2qV}{m}} = \frac{1}{8} \sqrt{\frac{2mV}{q}} = \]

\[= \frac{1}{0.344} \sqrt{\frac{2(6.6 \times 10^{-30} \text{ kg})(2700 \text{ V})}{2(1.6 \times 10^{-19} \text{ C})}} \]

\[= 3.1 \times 10^2 \text{ m} \]

b) \[v = \frac{2\pi r}{T} \]

\[T = \frac{V}{B} = \frac{v}{2\pi r} \sqrt{\frac{2}{2mV}} = \frac{2\pi m}{qB} = \ldots = 3.8 \times 10^3 \]

\[v = \sqrt{\frac{2qV}{m}} \]

What is the magnetic field for a loop of wire?

"magnetic dipole"

Torque "next page"

What is torque on a loop of wire? (in an external field)"
\[\mathbf{F}_1 = \hat{r} \times \hat{F} \]
\[= \frac{b I A B}{2} \]
\[\mathbf{F} = I \hat{I} \times \hat{B} \]
\[\mathbf{F}_1 = I L B \]
\[\mathbf{F} \cdot \mathbf{l} = I I L B \]
\[l = a \]
\[\mathbf{F} = I A B \]
\[\mathbf{F}_2 = \hat{r} \times \hat{F} \]
\[= M F L \sin \theta \]
\[= \frac{b I A B \sin \theta}{2} + \frac{b I a B \sin \theta}{2} \]
\[= b I A B \sin \theta \]
\[\mathbf{l} = I A B \sin \theta \]
\[\mathbf{F} = I A B \sin \theta \]

\[\text{=} \] Magnetic field will tend to align loops of current
Wheel and magnets?

Imaginary model of loops of current:

\[B = \vec{\mu} \times \vec{H} \]

- is all the same way, thus magnetic field.

Since electrons orbit, can think of them as loops of current. Then why are not all metals magnets?

Reality - much more complicated.

Materials exhibit 3 characteristics:

1. Paramagnetism - dipoles associated with spins of unpaired electrons aligning to lie along the external field.

2. Dia magnetism - the orbital speed of the \(e^- \) is altered in such a way as to charge the orbital dipoles to oppose the field.

3. Ferromagnetism - favorable for spins to align. Domains are nearly aligned.

Put in field

\[= \text{torque on loops} \]

Take away field, and still have magnet.
Magnetic Monopoles?

If you break up a magnet, you just get more:

\[S \rightarrow S N N S N N S N \]

not

\[S N \rightarrow S N \]

Major difference: the Electricity + magnetism

Whey do magnets pick up things?
- small opposite field induced in material by strong field from magnet.

\[S \rightarrow W \]

Do Demo'

Magnetic field lines from closed loop

\[\Rightarrow fields \]
Ex 27-1

\[\vec{F} = I \vec{L} \times \vec{B} \]

\[|\vec{F}| = ILB \sin \theta \]

\[= (30 \, \text{A})(0.12 \, \text{m})(0.9 \, \text{T}) \sin (60^\circ) = 2.8 \, \text{N} \]

Ex 27-3

\[\vec{F} = \sum d\vec{F} = \sum dF_x \hat{i} + \sum dF_y \hat{j} \]

\[dF_x = dF \cos \phi \]

\[dF_y = dF \sin \phi \]

\[\vec{F} = \int I dl \vec{B} \cos \phi \hat{i} + \int I dl \vec{B} \sin \phi \hat{j} \]

\[dl = Rd\phi \]

\[= IB \left[\int_0^\phi Rd\phi \cos \phi \hat{i} + \int_0^\phi Rd\phi \sin \phi \hat{j} \right] \]

\[= IBR \left[0 - \cos \phi \right] \hat{i} + \int_0^\phi \hat{j} \]

\[\vec{F} = IBR (2) \hat{j} \]
CRT - Cathode Ray Tube:

- What would e^- do if plates and coils off?
 \[F = qE = \frac{eE}{q} \]

- What if $+t$ turn on a potential difference? (e$^-$ go up)

- What if $+t$ turn off and turn on coils?

Use CRT to measure charge-to-mass ratio of e^- from above, \[\frac{e}{m} = \frac{V}{Br} \]

Use CRT to measure charge-to-mass ratio of e^- from above, \[\frac{e}{m} = \frac{V}{Br} \]

turn on both fields, so that beam is undeflected

\[\Sigma F = 0 \]

\[F_{mag} - F_{ed} = 0 \]

\[F_{mag} = F_{ed} \]

\[\vec{v} \times \vec{B} = \vec{E} \]

\[\vec{v} = \vec{E} \times \vec{B} \]

so

\[\frac{e}{m} = \frac{1}{Br} \left(\frac{E}{B} \right) = \frac{E}{B^2 r} \]

\[\frac{e}{m} = 1.76 \times 10^{11} \text{ C/kg} \]
The Hall Effect (37-8)

- Put current-carrying conductor in B field
- B force on e-
- Creates a potential drift.

\[F = q \vec{v} \times \vec{B} \]

\(\vec{E} \) = electric field
\(\vec{F} \) = force
\(q \) = charge
\(\vec{v} \) = velocity
\(\vec{B} \) = magnetic field

What if we consider current to be the flow of +ve charges?

Free is down.

Goes opposite potential drop.

\(\vec{E} \) = electric field
\(\vec{F} \) = force
\(q \) = charge
\(\vec{v} \) = velocity
\(\vec{B} \) = magnetic field

This first revealed that it is neg charge moving inside conductor.

\(Q \) is it possible to measure \(B \) using the Hall effect?
Calculating Magnetic Field

Experimentsally, \(\bar{B} \propto \frac{I}{r} \) \(\Rightarrow \bar{B} = \frac{C}{r} \)

\[C = \frac{\mu_0}{2\pi} \Rightarrow \bar{B} = \frac{\mu_0 I}{2\pi r} \]

Similar to Coulomb's law, a point charge gives only an axial \(\vec{d} \vec{B} \)

more generally, \(\bar{B} = \int \vec{d} \vec{B} \)

\[\frac{d\vec{B}}{d\tau} = \frac{\mu_0 I}{4\pi} \int \frac{\vec{d} \vec{r} \times \vec{r}}{r^2} \]

\[\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{\vec{d} \vec{r} \times \vec{r}}{r^2} \]

\[\text{also note: } \hat{r} = \frac{\vec{r}}{r} = \frac{\vec{r}}{r^2} \]

Notice: Vector sum

Example:

1. Draw good picture, w/ vectors
2. Consider direction (& consider \(\theta \))

\[\bar{B} = \mu_0 I \int \frac{d\vec{y} \times \vec{r}}{r^2} \]

\[\bar{B} = \frac{\mu_0 I}{4\pi} \int dy \int dx \sin \theta \]

\[r \text{ changing, } y \text{ changing, } \theta \text{ changing} \]

\[r^2 = R^2 + y^2 \]
2 ways:

1) \[\sin \theta = \frac{R}{r} \]
\[r^2 = R^2 + y^2 \]
\[r = (R^2 + y^2)^{1/2} \]
\[B = \frac{\mu I}{4\pi} \left(\int \frac{dy}{(R^2 + y^2)^{3/2}} \right) \]
\[= \frac{\mu I}{4\pi} \left[\frac{y}{(R^2 + y^2)^{3/2}} \right]^{\infty}_{0} \]
\[= \frac{\mu I}{4\pi R} \left[1 - (-1) \right] \]

Another example:

\[B = \frac{\mu I}{4\pi} \left(\int \frac{dx}{r^2} \right) \]
\[= \frac{\mu I}{4\pi} \left(\int \frac{R}{r^2} \right) \]
\[= \frac{\mu I}{4\pi} \int \frac{dx}{r^2} \]
\[= \frac{\mu I}{4\pi} \int \frac{R}{r^2} \]

\[y = -\frac{R}{\tan \theta} \]
\[dy = R \cos \theta \, d\theta = R \frac{db}{\sin \theta} \]
\[\sin \theta = \frac{R}{r} \]
\[dy = \frac{R \cos \theta}{(R^2 + y^2)^{3/2}} \]
\[B = \frac{\mu I}{4\pi} \left(\int \frac{R \cos \theta}{(R^2 + y^2)^{3/2}} \right) \]
\[= \frac{\mu I}{4\pi} \left(\frac{1}{R^2} \right) \]
\[= \frac{\mu I}{4\pi} \left(\frac{R}{R^2} \right) \]
\[\vec{B} = \frac{\mu_0 I}{4\pi} \frac{dl \times \hat{R}}{(R^2 + x^2)^{3/2}} \]

\[= \frac{\mu_0 I \rho}{4\pi (R^2 + x^2)^{3/2}} \int dl \hat{R} \]

\[= \frac{\mu_0 I \rho}{4\pi (R^2 + x^2)^{3/2}} 2\pi R \hat{R} \]

\[\vec{B} = \frac{\mu_0 J R^2}{2 (R^2 + x^2)^{3/2}} \hat{R} \]

Where is \(\vec{B} \) max? At \(x=0 \), the center of the loop.

Compare to E-field - \(\vec{E} = 0 \) @ center.

At \(x=0 \)

\[\vec{B} = \frac{\mu_0 I}{2\pi R} \]

Example 28-13

\[\vec{B} = \frac{\mu_0 I}{2\pi} \int \frac{dl \times \hat{R}}{R^2} = \int d\vec{B} \]

\[\hat{B} \]

\[\pi \]

\[\hat{R} \]

\[\hat{B} \]

\[\vec{B} = \frac{\mu_0 I}{2\pi} \int \frac{dl (1)}{R^2} \]

\[= \frac{\mu_0 I}{2\pi} \left(\frac{2\pi R}{4} \right) \]

\[= \frac{\mu_0 I}{4\pi} \left(\frac{2\pi R}{4} \right) \]

\[\vec{B} = \frac{\mu_0 I}{8\pi} \]

\[\vec{B} = \frac{\mu_0 I}{8\pi} \text{ into the board} \]
\[B = \frac{\mu_0 I}{4\pi} \int \frac{\text{d}x \times \hat{F}}{r^2} \]

\[\hat{F} = x^\perp \hat{y} + y^\perp \hat{x} \]

\[\text{d}x = R d\varepsilon = \text{r} \]

\[\text{d}x = R d\varepsilon \cos \theta - R d\varepsilon \sin \theta \]

\[\hat{x}^\perp = 0 \]

\[\hat{y}^\perp = 0 \]

\[\hat{j} \times \hat{r} = \hat{z} \Rightarrow \epsilon \mathbf{r} \]

\[\hat{k} \times \hat{r} = \hat{z} \]

\[\text{d}x \hat{x} = R d\theta \left[-x \sin \theta \hat{x} + x \cos \theta \hat{y} + y \sin \theta \hat{x} + y \cos \theta \hat{y} \right] \]

\[= R d\theta \left[-x \sin \theta \hat{x} + x \cos \theta \hat{y} - y \cos \theta \hat{x} \right] \]

\[\hat{B} = \frac{\mu_0 I}{4\pi} \int_0^{2\pi} R d\theta \left[x \sin \theta \hat{z} + x \cos \theta \hat{c} + y \cos \theta \hat{c} \right] \frac{1}{(x^2 + y^2)^{3/2}} \]

This is too complicated.
Steps to remember:
- Draw a careful diagram, labeling vectors
- Consider separate segments, and symmetry
- Figure out cross product
- Figure out |r| and it together. Integrate, be careful of limits.

Is there an easier way? Remember Gauss' law...

\[
\oint \mathbf{B} \cdot d\mathbf{e} = \mu_0 I \text{ Encircled} \]

Strategy: Pick loop (closed path) for which \(\mathbf{B} \cdot d\mathbf{e} = B \, dl \, (\mathbf{e}_1) \) or \(\cos \theta \).

\[
B \, dl \, (\mathbf{e}_1) \cos (\mathbf{B}_1 \cdot \mathbf{e}_1)
\]

For example: Log straight wire.
Symmetry tells us B points \(\mathbf{e}_1 \).
Pick loop in circle + draw \(\mathbf{H} \) and \(\mathbf{r} \).

\[
\mathbf{B} \cdot d\mathbf{e} = B \cdot d\mathbf{l}
\]

\[
\oint \mathbf{B} \cdot d\mathbf{e} = \mu_0 \int \mathbf{I} \cdot d\mathbf{l}
\]

\[
B = \frac{\mu_0 I}{2\pi r}
\]

Guess \(|B| \) only gives the magnitude.
Circle $(x-2)^2 + (y-3)^2 = 4$

Symmetry: ...

Outside

\[\int B \cdot dS = \mu_0 I \text{ and } B \cdot dS = \mu_0 I \]

Inside \: \text{and} = ?

Same form: circular, uniform density, so take area ratio

\[T_{enc} = \frac{I}{\pi R^2} \]

\[B \cdot 2\pi r = \mu_0 \left(\frac{I}{2\pi R^2} \right) \]

\[B = \frac{\mu_0 I}{2\pi R^2} \]

Solenoid (demo?)

Cut away \(20 \times 10 \text{mm} \)

Field really straight

Field really zero

In simplified case, land up...
\[\mathbf{B} \cdot d\mathbf{e} = \mathbf{B} \cdot (\mathbf{v} + \mathbf{v}' + \mathbf{v}'' + \mathbf{v}''') \]

\[= B \mathbf{v} = \mu_0 I \text{end} \]

\[I \text{end} = NT \]

\[B = \mu_0 NT \]

\[v = \frac{v}{\text{cm}} \]

\[B = \mu_0 N I \]

toroid: find \(B \) in and outside toroid, home class try

under low \(I \) end = 0

\[B \text{int} = \mu_0 N I \]

\[B = \frac{\mu_0 N I}{2\pi r} \]

concluded ch 8
For a 5th wire

\[B_1 = \frac{\mu_0 I_1}{2\pi d} \]

\[F_2 = I_2 B_1 l_2 \]

\[F_2 = I_2 \left(\frac{\mu_0 I_1}{2\pi d} \right) l_2 \]

\[F_2 = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d} l_2 \]

Attractive

Repulsive
