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LECTURE 3

Einstein Coefficients

Kirchoff’s law relating emission to absorption for a thermal emitter must involve mi-

croscopic physics. Consider system with two energy states with statistical weights g1 and g2

respectively. Transition from 2 to 1 is by emission and from 1-2 by absorption. State 1 has

energy E and state 2 has energy E + hν.

1. Define the Einstein A21 coefficient as the probability per unit time for spontaneous

emission.

2. The absorption of a photon ∝ density of photons or the mean intensity at frequency

ν0. Energy difference between two levels is not sharp, but broadened, and so we also need

to consider the line profile function φ obeying
∫
∞

0 φ(ν)dν = 1. This is usually quite narrow.

The transition probability per unit time for absorption is

B12J̄ = B12

∫
∞

0
Īνφ(ν)dν, (64)

where B12 is the Einstein B coefficient and Jν = Īν =
∫

IνdΩ/(4π), the intensity averaged

over solid angle. Here J̄ ∼ Jν0
for narrow line profiles.

Derivation of Planck’s law led Einstein to include stimulated emission. It can be thought

of as negative absorption and has a coefficient B21 such that B21J̄ is the transition probability

per time for stimulated emission, also proportional to the intensity.

Relation between Coefficients

Micro-physical relations that are independent of temperature will hold regardless of

whether processes are in thermodynamic equilibrium or not, but we can use case of thermo-

dynamic equilibrium to get at them when possible.

In thermodynamic equilibrium the number of transitions per unit time per volume into

state 1 are equal to the transitions out. If n1 and n2 are number densities of atoms in states

1 and 2 we have

n1B12J̄ = n2A21 + n2B21J̄ . (65)

This gives (wrong in text)

J̄ =
A21/B21

(n1/n2)(B12/B21) − 1
, (66)

where

n1/n2 = (g1/g2)e
hν/kT (67)
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so

J̄ =
A21/B21

(g1/g2)(B12/B21)ehν/kT − 1
. (68)

But Jν ∼ Bν for thermodynamic equilibrium so we have the Einstein detailed balance rela-

tions which relate atomic properties

g1B12 = g2B21 (69)

and

A21 = 2(hν3/c2)B21. (70)

These do not depend on temperature and must hold independently of thermodynamic equi-

librium. If we can determine any one of the Einstein coefficients we get the other two.

Wien’s law follows if you don’t include stimulated emission. Recall that was the hν >>

kT regime, so n2 << n1 and the stimulated emission term is small.

Absorption and Emission Coefficients in Terms of Einstein Coefficients

Assume that line profile during spontaneous emission is same as φ(ν) line profile. Then

jνdV dΩdνdt = (hν0/4π)φ(ν)n2A21dV dΩdνdt, (71)

so the emission coefficient equals

jν = (hν0/4π)n2A21φ(ν). (72)

For the absorption coefficient the energy absorbed in dV and in dt is

dE = hν0n1B12(1/4π)dV dt
∫

Iνφ(ν)dνdΩ, (73)

where but take dV = dsdA (the cylinder). Then using dIν = ανIνds for the absorprtion, we

have

αν,abs = (hν0/4π)n1B12φ(ν). (74)

Stimulated emission can be thought of as inverse absorption so the full absorpion coefficien

is then

αν = (hν/4π)(n1B12 − n2B21)φ(ν). (75)

Transfer Equation in terms of the Einstein Coefficients

dIν/ds = −(hν/4π)(n1B12 − n2B21)φ(ν)Iν − (hν/4π)n2A21φ(ν). (76)
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The source function is jν/αν and so

Sν = n2A21/(n2B12 − n2B21). (77)

Using the Einstein relations (69) and (70) gives

αν = (hν/4π)n1B12(1 − g1n2/g2n1)φ(ν) (78)

and

Sν = (2hν3/c2)(g2n1/g1n2 − 1)−1. (79)

Masers/Lasers:

For a system in thermal equilibrium we have

n1/n2 = (g1/g2)e
hν/kT (80)

which implies

n1/g1 > n2/g2 (81)

But it is possible to pump atoms into the upper state to reverse this relation. Then (75) (or

78) is negative, implying negative absorption. The intensity actually increases along the ray

path exponentially with the optical depth.

Many interesting maser sources in astrophysics. NGC4258 is a galaxy for which H20

masers (22.235, 321..GHz) in the central region trace a Keplerian warped accretion disk,

which has provided some of the best evidence for black holes in nature.

Also, OH/IR sources: large cool giant star or supergiant star losing mass rapidly in

winds and detected only in IR or masers in OH (1.665 Ghz). Can use OH masers in these

sources to estimate their distances. The maser emission line from the expanding wind shell

has a red and blue component because the near side part of the wind is moving at us, and

the far side is moving away (centered at the star). But variability in the stellar wind (i.e.

turning on and off rather than being steady) will show up with a delay between the red and

blue parts of the line due to the cross time across the source. Since radio telescopes can

resolve the angular diameter, we can get the source diameter and thus the distance. More

explicitly, d = r/θ = ct/θ, where d is distance, r is the “wind span” t is the measured time

delay and θ is the measured angular diameter.

Scattering

So far we have ignored scattering. Scattering can be considered an emission process

that depends on the amount of radiation incident upon the medium doing the scattering.

(Contrast: Thermal radiation does not depend on incident radiation.)
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Consider electron scattering (scattering of photons by electrons). Here we assume

isotropic, coherent (elastic) scattering. More elaborate coverage of these assumptions later.

The scattering emission coefficient is found by equating the power “absorbed”(think of

scattering as absorption and immediate re-emission) per unit volume and frequency to the

power emitted.

jν = σνJν. (82)

Where σν is the scattering coefficient (not to be confused with the cross section or Stefan

Boltzmann constant!) This gives Sν = Jν and

dIν/ds = −σν(Iν − Jν). (83)

The solution cannot be easily extracted from (45). Consider instead thinking of the scatter-

ing, absorption and emission processes in probabilistic terms for a single photon.

Consider a photon in an infinite homogeneous scattering region. Displacement of photon

after N free paths is

R =
N∑

a=1

r(a). (84)

where the sum is over free displacements, not vector indices. Mean square photon displace-

ment is given by

l2
∗

= 〈R2〉 = 〈
N∑

a=1

r(a) · r(a)〉, (85)

as the cross terms vanish for isotropic scattering when there are a large number of scatterings.

(Book does not mention this requirement.) Each term of the sum on the right of (85)

contributes the mean free path squared, so we have

l2
∗

= Nl2, (86)

which indicates the mean square displacement of the photon For a finite medium, we can

determine the number of scatterings N . For large optical depths, N is found by setting

l∗ = L, the typical size of the medium. so that L/l = τ , the optical depth to scattering

and N ' τ 2. This is a large N result only, because in deriving it we assumed that each

contribution to the sum on the right of (85) contributes the same amount (and that cross

terms vanish). This is true only within an error of ±1/N 1/2, so the error is small for large

N and large for small N .

For small optical depths the probability for scattering is 1 − e−τ ∼ τ , which is equal to

the expected number of scatterings in transversing the medium. The reason is that e−τ is

probablity for a photon NOT to scatter in trasversing an optical depth τ so 1 − e−τ is the

probability to scatter. Thus, per optical depth, this gives the number of scatterings.


