Helmet Protection against Traumatic Brain Injury: A Physics Perspective

Eric Blackman (University of Rochester)

Acknowledgements:
- DSSG, Institute for Defense Analyses (Alexandria, VA)
- Willy Moss (LLNL)
- Michael King (LLNL)
- Melina Hale (U. Chicago, DSSG ‘06-’07)
- Sarah Lisanby (Columbia U., DSSG ‘06-’07)
Closed Traumatic Brain Injury (TBI)

- **physical injury to the brain without skull fracture**
 - **concussions** (non-local; midbrain, brainstem, frontal lobe)
 - **diffuse axonal injury** (shear damage of axons; white matter grey matter linkage)
 - **contusions** (general bruising)
 - **subdural hematoma** (bridging vein damage)
 - **chronic traumatic encephalopathy** (CTE) (degenerative brain injury from repetitive head trauma)
Chronic Traumatic Encephalopathy (e.g. McKee 2009)

• CTE: toxic “tau protein” builds up in brain cells, preventing normal connections to other cells; cells die
• tau protein shows up as neurofibrillary tangles (NFTs) and glial tangles
• Tangles are formed by hyperphosphorylation of tau proteins in microtubules, causing tau to aggregate
• accompanies dementia though not itself a signature of Alzheimers (no beta amyloid)
• Prevalent in brain tissue of deceased football players and boxers, some even without clinical history of excessive concussions.
• Role of many low level impacts vs. few extreme impacts on CTE/ ITBI requires more work
Brain of deceased 18 year old football player (McKee 09)
Sources of TBI without skull fracture

• (1) head impact (ITBI)

• (2) blast overpressure (OTBI)

• (3) blast + impact: ITBI + OTBI combination must be common
Cost of TBI (in USA)

- **Human costs**

- **Civilian**: 2×10^6 cases/yr; 50% auto; 25% sports (McArthur 04)
 - 20 deaths per 100,000: 20 billion/yr treatment

- **Military**:
 - before 2006; estimated 3% of soldiers have TBI (60% of hospital injured soldiers)
 - 0.6% of all soldiers serious TBI
 - New screenings: 2006-2009 ~20% of all troops have TBI; 1.5% of all troops unfit to return by current military standard
 - cost 2.7 million (Blimes 07) per 25 yr post-TBI life of soldier
 - >2 billion/year just for treatment of soldiers

- **Workforce / mission / security costs**
TBI is an Interdisciplinary Frontier

-Timely TBI: military, NFL
-Modern protection equipment has reduced fatalities, leaving previously hidden secondary injuries.
-NFL: 60% incur at least 1 concussion; retired players 19 times more likely to show symptoms of CTE (McKee 09)
-Many aspects of TBI science are nascent
 • medical screening and correlation with trauma
 • “macho” culture: TBI not always understood as physical
 • PTSD vs TBI diagnosis and treatment
 • physiology and biology of injury
 • connecting external force to specific injury (impact vs. blast)
 • basic physics of protection/ engineering protective equipment
 • understanding deficiencies in protective equipment
 • data collection

-Business, Politics, vs. Science
Head Impacts

• Gravity or explosion converts gravitational potential energy or chemical energy into bulk kinetic energy

• Rapid deceleration upon impact implies large force

• During impact, kinetic energy is converted into deformation energy
 – Brain damage from energy dissipated in brain rather than helmet or skull
 – tissue stress (force per unit area) threshold for injury
 – duration of force threshold for injury
TBI from Impacts

• As head impacts, brain keeps moving; it is coupled to skull by cerebral spinal fluid (CSF)

• Brain ‘crashes’ into skull displacing fluid; stresses brain tissue both by compression and shear

• Protecting skull from fracture is insufficient to protect brain from crashing into skull

• Need to:
 – reduce head acceleration (reduces maximum force incurred by brain-skull crash)
 – reduce energy absorbed by brain (reduces energy available to sustain a distorted brain for extended period)
Role of Helmets for Impact TBI

- Hard shell alone is no good

- **Need cushioning** to reduce head impact acceleration and thus force on brain

- Cushioning standard must be more stringent to protect against closed TBI than to just prevent skull fracture

- subtleties in helmet/skull/brain/body force coupling
Origin of TBI/Blunt Impact Standards

Ono et al. 1980 (human cadaver and scaled monkey data)
Impact Acceleration Profile

- Peak force for short time
- Lower force over longer time

Graph showing acceleration (G) over time (s).
Widely used Injury Measures

1. Peak g

2. \[\text{HIC} = (t_2 - t_1) \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} a(t) dt \right]^{5/2} \] (around peak)

3. \[\text{SI} = \int_{t_1}^{T} a^{2.5} dt \] \[(0 < t_1 < t_2 < T) \]

- SI (severity index) and HIC (head injury criterion) empirically accommodate acceleration and duration from cadaver and animal injury data
- Can create injury probability graph
- e.g.: Head HIC > 1000 (sec), 16% risk of life threatening TBI (Prasad & Mertz 1985) scaled monkey data; auto industry.
Classification of TBI Severity

(Hayes et al. 07)

<table>
<thead>
<tr>
<th>Injury severity AIS</th>
<th>Severity code</th>
<th>Fatality rate (range %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minor</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>Moderate</td>
<td>0.1–0.4</td>
</tr>
<tr>
<td>3</td>
<td>Serious</td>
<td>0.8–2.1</td>
</tr>
<tr>
<td>4</td>
<td>Severe</td>
<td>7.9–10.6</td>
</tr>
<tr>
<td>5</td>
<td>Critical</td>
<td>53.1–58.4</td>
</tr>
<tr>
<td>6</td>
<td>Maximum (currently untreatable)</td>
<td>...</td>
</tr>
</tbody>
</table>
HIC15 AIS4 Injury Risk (Prasad & Mertz 85, data compilation)
How are HIC and SI used?

- NHTSA uses HIC = 1000. (supposedly 1% chance of fatality 30MPH collision for restrained driver)
- NOCSAE uses SI = 1200; (~ JHTC) but for NFL does not fully protect against TBI: should be <140 based on concussion data. Presently NO TBI standard. Moreover, the rigor of NOCSAE oversight committee needs to be challenged: http://www.nytimes.com/2010/10/21/sports/football/21helmets.html
- NO current SI/HIC standard for most military Helmets; peak g standard only and its NO GOOD.
 - Slobodnik (1980): need <150G at 1.5 meters drop
 - special forces helmets: standard is 150G at 1.5 feet(!)
 - Free falls of 3 feet for a ~5kg head form including PAGST or ACH helmets give 300G (McEntire et al.05)
Advanced Combat Helmet (ACH) is based on the MICH design and prov PASGT. In addition to providing the Soldier ballistic and impact protection, communication devices, and Night Vision devices. It provides increased 9m although reducing area of coverage, will improve the field of vision and head components: The helmet shell, the pad suspension system, the retention sy
Modular Integrated Communications Helmet (MICH) is a lightweight interface with most tactical communications headsets and microphones.
Personal Armor System for Ground Troops (PASGT) helmet (also called the Kevlar, K-Pot and Fritz) was a helmet, available in five sizes, provides ballistic protection for the head from fragmenting munitions. It is a composite of ballistic fiber and phenolic PVB resin. For a complete story, go to olive-drab.com

![Helmet images](image)

This is the standard helmet above
Current Military Helmets Fail

Wayne State Head Tolerance (WSHTC) Gujdar Dan et al. 1966

Combat Helmets for 4.5 ft drop McEntire et al. 05

Japan Head Tolerance (JHTC); 25% prob. of concussion; HIC=1100) Ono et al. (1980)
Viano et al 2007

(Pellman et al. 03)
Innovative use of Accelerometers

FIGURE 2. Virginia Tech helmet with the player unit installed.

FIGURE 1. The player unit, consisting of 6 accelerometers in spring-loaded holders, frequency modulation antenna, and rechargeable battery pack.

FIGURE 7. One player’s head impacts for 1 game in which he sustained a concussion (1) and stayed in the game, and a neck stinger (2) for which he came out briefly before playing the remainder of the game.
FIGURE 3. Sideline controller laptop screen. A, A direct indication of the most recent impact. Directional vectors for the last impact are shown. B, Accelerometer traces of longitudinal (Azi), vertical (Mag), and impact (HIC) data. C, Graph showing acceleration magnitude history in chart format.
30% risk curve like JHTC (uses scaled monkey data)

Military helmets; 4.5 foot drop

Actual >70% NFL risk curve

Blast simulations (w/injury)
(Moss, King, Blackman 09)

augmented from Pellman et al (03,06)
ITBI protection standards AND measures are flawed

- **measures**: HIC, SI based only on (limited) experimental data; body mass and impact angles not included, have little theoretical foundation, not even the best indicators...
- even if measures were correct: **standards** in military and NFL are inadequate
- Different material properties needed at different accelerations
- ITBI measures are **useless** for OTBI (later)
- newer paradigms for ITBI: many low acceleration impacts vs. few high acc. impacts may cause CTE

Instead, the brain of this world champion boxer showed a massive build-up of the toxic form of tau protein as neurofibrillary tangles (NFTs) and glial tangles throughout his brain. The neurofibrillary and glial tangles were...
woodpecker brain against the skull is approximately πr_w^2
whereas that of the human brain, A_h, is $\pi r_h^2/2$, where r_w and r_h are the radii of the woodpecker and human brains, respectively. Assuming that brain injury occurs at the same stress, σ, in both the woodpecker and the human, then

$$\frac{\sigma_w}{\sigma_h} \propto \frac{F_w}{F_h} \frac{A_h}{A_w} \frac{\rho_w r_w a_w}{\rho_h r_h^2 a_h}$$

imaging expeime

impact rather thar

head accelerations

The maximum withstand without

the acceleration. \cite{Ono1980} s

impact: acceleratio
Woodpeckers probably don’t get TBI: HIC relies on fixed brain mass and surface area but “stress” ~ mass times acceleration/area

Figure 1 Tolerance curves for human and acorn woodpecker *Melanerpes formicivorus* head impact. The lower curve gives the threshold
Role of Body Mass and Impact Angle on Injury Thresholds (Blackman 2010)
Physical Quantities that TBI measures should correlate

- **External**
 - linear force (mass \times linear acceleration)
 - total energy and energy input rate
 - torque (moment of inertia \times rotational acceleration)

- **Internal**
 - brain tissue stress or pressure maximum
 - brain tissue rate of elastic energy change (localized)
Numerically Simulating Impact + Head Models: TBI Thresholds based on Internal Stresses

- Zhang et al. 04; reproduced NFL collisions with Wayne State Head Model
- WSHM: gray matter (cell) white (fibrous): shear moduli 20% larger for white; white is 2-D isotropic, grey is 3-D isotropic; brain stem shear mod 40% higher than cerebrum etc..
- Data on these properties differ, but codes can incorporate what the data require
TBI “internal” measures from simulations

- Zhang et al 04: reproduce NFL game video impacts with head forms in lab, then use lab data as input for numerical simulations to calculate internal stresses
- Maximum stress at core (diencephalon, upper brain stem)
- Rate of maximum strain (= rate of elastic energy change) and peak stress were best correlators with injury

Fig. 6 Shear stress contours predicted by the model at 16 ms for: (A) a parasagittal section; (B) Sectional view through A-A which represents a section through the mamillothalamic tract
Coup + Contrecoup pressures

Fig. 4. (A) Predicted peak positive and peak negative intracranial pressure-time histories; (B) Predicted intracranial pressure distribution 9 ms after the impact

Journal of Biomechanical Engineering

Liyiang et al (04)
Xenith Helmet: New paradigm for Impact protection. “Air Cushions” with a hole that hydrodynamically adjust stiffness depending on impact acceleration.
Newer Cushioning (2010)

- “Phatcushion” TPU (Thermoplastic polyurethane) elastic rather than dissipative (not yet in helmets)

- Schutt TPU cushions:
 - claim to reduce impact deceleration by 15-20% compared to Ridell and Xenith
• Impact TBI (ITBI) protection suffers from:
 - inadequate measures and standards
 - insufficient data
 - lack of first-principles modeling
 - insufficient interdisciplinary research

• Overpressure TBI: an even newer frontier

• Blast produces pressure + impact injury
Simulations of Blast vs. Impact:
Moss, King, Blackman (2009)

ALE3D: LLNL’s blast analysis code

- Originally developed to support the nuclear weapons complex
- 3D Arbitrary Lagrangian-Eulerian Hydrocode
 - Advection capabilities
 - Built in methods for coupling fluid and structural interactions
 - Complex geometries
 - Massively parallel capabilities ← analysis with supercomputers
 - Rich material library
 - Thoroughly tested

- ALE3D is specially designed for studying the response of complex structures to blast
The “Head” in the simulations
Model for Impact

- HIC = 1090
- peak g = 194 g
- impact duration = 2.1 ms
Snapshots of Impact vs Blast Pressures

Blast wave at 5.6 ms after detonation
Impact versus blast

Impact
- Large linear accelerations
- Angled → large rotations
- Moderate skull flexure at ends
- High coup pressure
- Contrecoup tension → cavitation
- Small pressure gradients
- Rotation → large shear strains, bridging vein stretching

Blast
- Negligible linear acceleration
- Small rotations (more with whiplash?)
- Pressure wave → large lateral skull flexure
- Moderate coup/contrecoup pressure
- Hydrostatic tension → cavitation
- Skull flexure → large pressure gradients
- Rotation, pressure gradients → moderate shear strains
Future Studies

• BLAST over-pressure (OTBI)
 – Add more realistic head model
 – compare to other pathways that couple blast to brain (e.g. Cernak 01,05)

• IMPACT (ITBI)
 – consider impacts of different durations
 – include effect of body attached to head for the impact and vary impact with angle extract effective mass

• For BOTH:
 – correlate specific external forces with specific internal stresses
 – simulate helmet shells and cushioning to develop “intuition” and “principles” that guide material design to mitigate the internal stresses
 – run impact simulations for pre-injured brain from overpressure
 – correlate specific blast vs. impact history with medical symptoms
 – correlate stresses with biological/biochemical changes
 – integrate/test simulations with clinical studies where injury history, symptoms, and pressure acceleration data are available
Need Interdisciplinary Effort

• Pinning down quantitative thresholds for injury requires better in vivo measurements of tissue properties and correlation with clinical data
• Also need better material measurements
• BUT: let us not confuse “principles” with “parameters”: e.g. simulations are powerful tools and it’s easy to change the parameters
• Need iterative interplay between simulations and experiment to “benchmark” simulations
END