AstroBEAR Projects for parallel and distributed systems course
 AstroBEAR is a parallelized (with MPI and Multi-threading) Astrophysics simulation code with AMR (Adaptive Mesh Refinement) developed by Prof. Adam Frank’s group. AstroBEAR has been running successfully on TOP500 supercomputers like Stampede, Kraken and our own flagship IBM blue gene/Q system. More details about the code and simulation results can be found at the AstroBEAR wiki http://astrobear.pas.rochester.edu and our youtube channel http://www.youtube.com/user/URAstroBEAR 
Project 1. Optimize the MUSCL scheme in AstroBEAR code with OpenMP
MUSCL (Monotone Upwind-centered Schemes for Conservation Laws) are implemented in the current revision of AstroBEAR code with splitting method -- each process first updates the cells along one direction then does the advance along another direction. In this project, we are planning to de-composite the domain of each process and create a thread to do the advance of each of the sub-domains with openMP. Since muti-threading brings in more parallelism to the MUSCL scheme, we expect it will speed up the calculation especially when doing AMR.

Project 2. Implement a knapsack distribution algorithm as
an alternative to the Hilbert-Splitting approach

To find the most efficient way of distributing the workload among processors/threads is one of the big challenges in high performance computing. Different from other AMR codes that keep the whole AMR grids tree on each node, AstroBEAR uses distributed tree structure to manage the AMR tree. With our distributed tree system, a processor only needs to communicate with those processors interacting with it. This makes AstroBEAR less memory expensive and more efficient.  In the current version of AstroBEAR code, grids are distributed among processors according to Hilbert space-filling curve (Details about this approach can be found at https://astrobear.pas.rochester.edu/trac/astrobear/wiki/AstroBearDetails and http://en.wikipedia.org/wiki/Hilbert_curve). 

The load-balancing algorithm of parallel computing can be understood as a knapsack problem. In this project, we are planning to implement knapsack distribution algorithm as an alternative to the Hilbert algorithm.  The knapsack algorithm will find the optimal way distribute the grids dynamically among the processors by solving a knapsack problem.
