MUSCL Scheme and Sweep Scheme in AstroBEAR

Baowei Liu

University of Rochester

January 21, 2013
MUSCL Scheme
- One-Dimensional MUSCL Scheme
- Multi-Dimensional: Splitting VS UnSplitting

Sweep Scheme in AstroBEAR

Testing Results

Summary MUSCL Scheme in AstroBEAR
MUSCL: Monotone Upwind(Upstream)-centered Schemes for Conservation Laws

MUSCL-Hancock Method

- Spatial reconstruction:
 \[U_{LR}^i = U_i^n \pm \frac{1}{2} \Delta_i \]

- Temporal evolution (CFL condition):
 \[\overline{U}_{i}^{LR} = U_{LR}^i + \frac{1}{2} \frac{\Delta t}{\Delta x} \left[f(U_{L}^i) - f(U_{R}^i) \right] \]

- Solving intercel flux \(f_{i+\frac{1}{2}} \) with Piece-Wise Riemann Problem:
 \[U_t + f(U)_x = 0 \]
 \[U(x, 0) = \begin{cases} \overline{U}^R_i, & x < 0 \\ \overline{U}^L_i, & x > 0 \end{cases} \]

- Conservative update:
 \[U_i^{n+1} = U_i^n + \frac{\Delta t}{\Delta x} \left[f_{i-\frac{1}{2}} - f_{i+\frac{1}{2}} \right] \]

Figure 1: MUSCL Scheme: Spatial Reconstruction
Splitting Methods

Splitting Methods:

1. \[U_{i,j}^{n+1} = U_{i,j}^n + \frac{\Delta t}{\Delta x} \left[f_{i-\frac{1}{2},j} - f_{i+\frac{1}{2},j} \right] \] for all \(i \)

2. \[U_{i,j}^{n+1} = U_{i,j}^{n+1} + \frac{\Delta t}{\Delta y} \left[f_{i,j-\frac{1}{2}} - f_{i,j+\frac{1}{2}} \right] \] for all \(j \)

3. Exchange directions every step in 3D \((x, y, z), (y, z, x), (z, x, y), \cdots\)

Figure 2: Splitting methods: Update \(U_{x,y} \) with \(f_x \) first, then with \(f_y \)
Unsplitting Methods

1. \[U_{i,j}^{n+1} = U_{i,j}^n + \frac{\Delta t}{\Delta x} \Delta f_i + \frac{\Delta t}{\Delta y} \Delta f_j \] for all \(i, j \)
2. Exchange directions every step in 3D \((x, y, z), (y, z, x), (z, x, y), \cdots\)

Figure 3: Unsplitting Methods: Update \(U_{x,y} \) with \(f_x \) and \(f_y \)
Splitting Vs. Unsplitting

- 3D update: $x \rightarrow y \rightarrow z$
- 1D stencil
- Straight forward

- 3D update: $x + y + z$
- 3D stencil
- Corner Transport Upwind (CTU)

Figure 4: splitting method

Figure 5: unsplitting method
MUSCL Scheme

1. Spatial reconstruction: \(q^n_{LR,x} \)
2. Temporal evolution: \(q^{n+\frac{1}{2}}_{LR,x} \)
3. Riemann solver: \(f^{n+\frac{1}{2}}_{LR,x} \)
4. Conservative update: \(q^{n+1} = q^n + \Delta f_x \)
5. repeat in \(y \) and \(z \)

Sweep Scheme in AstroBEAR

1. Spatial reconstruction in \(x, y, z \): \(q^n_{LR,x,y,z} \)
2. Temporal evolution in \(x, y, z \): \(q^{n+\frac{1}{2}}_{LR,x,y,z} \)
3. Calculate predicted fluxes: \(f^{n+\frac{1}{2}*}_{x,y,z} \)
4. Transvers flux update (CTU): \(q^{n+\frac{1}{2}}_{LR,x,y,z} \)
5. Calculate final fluxes: \(f^{n+\frac{1}{2}}_{x,y,z} \)
6. Update: \(q^{n+1} = q^n + \Delta f_x + \Delta f_y + \Delta f_z \)
Results from 1D MUSCL Euler Equation Solver and AstroBEAR

Figure 6: Sod Shock Tube: Density

Figure 7: Sod Shock Tube: Velocity

Figure 8: Sod Shock Tube: Pressure
- A simple alternative scheme for AstroBEAR
- Things to do: add tracer, get multi-dimension work
- Things to Add: Fluxes/slope Limiters, How CTU implemented in AstroBEAR