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What will you learn on this class?

Start from ”Hello World!”
Write and execute Parallel code on the GPU
Basic concepts and technologies witu CUDA programming
Hands-experience on BlueHive with Labs
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Prerequisites

You (probably) need experience with C or C++
You don’t need GPU experience
You don’t need parallel programming experience
You don’t need graphics experience
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Multicore vs. Manycore
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Multicore vs. Manycore

(a) Intel’s Xeon processor
includes 12 CPU cores @ 2.4
GHz with simultaneous
multithreading, 30MB of L3
cache, and on-chip DRAM
controllers. Made with 22 nm
process Technology.

(b) The Tesla K20 GPU includes
2688 CUDA cores @ 732 MHz,
1.5MB of L2 cache.Made with
28 nm process Technology.
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Streaming Multiprocessors(SMs)

Perform the actual computations
Each SM has its own control units, registers, execution
pipelines, caches
Each Tesla Kepler GPU has 15 SMX Units.
Each SMX has 192 single-precision CUDA cores, 64
double-precision units and 32 special function units (SFU) and
32 load/store units (LD/ST).
A Fermi SM has 32 CUDA cores.
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GPU

Shift to GPUs
Single core processors have hit performance wall due to heat
dissipation and power requirements
Hardware industry created multicore CPUs to overcome these
limitations
Science community has taken notice of GPU performance and
have ported codes to use GPUs
GPU programming model different, and programmers need
tools to provide unified view of application’s performance
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CUDA

Early work used the original interfaces developed for Graphics
(eg OpenGL)
Non-intuitive, high learning curve → NVIDIA developed
CUDA
Developed specifically for general computation
Abstracts the hardware into the CUDA Model
CUDA is a language extension
Library calls for your C/Fortran code
A runtime system to handle data movement, GPU scheduling,
etc.
Open Source Alternative: OpenCL(Available on a very wide
range of devides. Flexibility costs: complexity)
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GPU Programming
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Review on Terminology

SM: Streaming Multiprocessor, the component which
performs the actual computations on GPU. One GPU has
Multi-SMs and each SM has many cores
Host: The CPU and its memory (host memory)
Device: The GPU and its memory (device memory)
Kernel: functions that execute on GPU devices.
Kernel Launch: call device code from a host
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Module,Compiler and Queue

CUDA Module on BlueHive
1 $module load cuda/5.5/b1

Compiler nvcc (VS. gcc, g++ etc.)
1 $which nvcc

GPU Queue: graphics, standard
1 $salloc −p graphics −−gres=gpu:1 −t 00:30:00
2 $srun −−pty $SHELL −l
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Hello World!

1 int main(void) {
2 printf("Hello␣World!\n");
3 return 0;
4 }

1 $ nvcc hello world.cu
2 $ ./a.out
3 Hello World!
4 $

Standard C that runs on the host
NVIDIA compiler (nvcc) can be used to compile programs
with no device code
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Hello World! with Device Code

1 __global__ void kernel(void) {
2 }
3

4 int main(void) {
5 kernel<<<1,1>>>();
6 printf("Hello␣World!\n");
7 return 0;
8 }

CUDA C/C++ keyword global indicates a function that:
Runs on the device
Is called from the host code
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CUDA ”Hello World!” on BlueHive

Hello World! with Device Code

1 __global__ void kernel(void) {
2 }
3

4 int main(void) {
5 kernel<<<1,1>>>();
6 printf("Hello␣World!\n");
7 return 0;
8 }

Triple angle brackets mark a call from host code to device
code

Also called a ”kernel launch”
We’ll return to the parameters (1,1) in a moment

That’s all that is required to execute a function on the GPU!
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Hello World! with Device Code

1 __global__ void kernel(void) {
2 }
3

4 int main(void) {
5 kernel<<<1,1>>>();
6 printf("Hello␣World!\n");
7 return 0;
8 }

kernel() does nothing!
No data move needed!
Not a typical ”Hello World!” example: Can we put the printf
line in the kernel?
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Vector Addition on the Device

Ask the device to do more: add two vectors and send the
results back
Big picture: Need to do memory allocation and data copy
between CPU and GPU
Will use the code in Lab 1
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Serial Code for Vector Addition

1 for (int i=0; i<N; i++)
2 C[i] = A[i] + B[i];

How to parallel it with MPI or OpenMP?
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Vector Addition on the Device

1 C[thread_id] = A[thread_id] + B[thread_id];

Suppose you have enough threads to use and the sizes of the
vectors are small.
Each thread computes one element of the vector
Still need serial code to allocate memory and do data tranfer
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Vector Addition on the Device

1 int main() {
2 int* a; //input arrays (on host)
3 int* b;
4 int* res; //output array (on host)
5

6 int* a_dev; //input arrays (on GPU)
7 int* b_dev;
8 int* res_dev; //output array (on GPU)
9

10 //allocate memory
11 a = (int*) malloc(N*sizeof(int));
12 b = (int*) malloc(N*sizeof(int));
13 res = (int*) malloc(N*sizeof(int));



CIRC Summer School: CUDA on BlueHive
Introduction

Example with Data Move

Vector Addition on the Device

Allocate memory on device:

1 cudaMalloc((void**) &a_dev, N*sizeof(int));
2 cudaMalloc((void**) &b_dev, N*sizeof(int));
3 cudaMalloc((void**) &res_dev, N*sizeof(int));

Move data to device:

1 //transfer a and b to the GPU
2 cudaMemcpy(a_dev, a, N*sizeof(int),

cudaMemcpyHostToDevice);
3 cudaMemcpy(b_dev, b, N*sizeof(int),

cudaMemcpyHostToDevice);
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GPU Programming with CUDA

Define kernel:

1 __global__ void kernel(int* res, int* a, int* b) {
2 //function that runs on GPU to do the addition
3 //sets res[i] = a[i] + b[i]; each thread is

responsible for one value of i
4

5 int thread_id = threadIdx.x + blockIdx.x*blockDim.x
;

6 if(thread_id < N) {
7 res[thread_id] = a[thread_id] + b[thread_id];
8 }
9 }
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GPU Programming with CUDA

Launch kernel:

1 //call the kernel
2 int threads = 512; //# threads per

block
3 int blocks = (N+threads-1)/threads; //# blocks (N/

threads rounded up)
4 kernel<<<blocks,threads>>>(res_dev, a_dev, b_dev);

Move data:

1 cudaMemcpy(res, res_dev, N*sizeof(int),
cudaMemcpyDeviceToHost);



CIRC Summer School: CUDA on BlueHive
Introduction

Example with Data Move

Review on GPU Programming with CUDA

Define kernel
Allocate memory
Copy data from host to device
Launch kernel
Copy data from device to host
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Text Editors

Linux editors: vi, emacs
X2Go GUI for BlueHive: gedit
info.circ.rochester.edu, Getting Started
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CUDA Fortran

PGI Fortran Compile
https://www.pgroup.com/resources/cudafortran.htm.
Not installed on BlueHive
Call C functions from Fortran code? .o file can be generated
from .cu but fortran compiler on BlueHive would recognize.

https://www.pgroup.com/resources/cudafortran.htm
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Matlab with GPU on BlueHive

CUDA: Test if there’s a device availale.

1 cudaGetDeviceCount(&deviceCount);
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Questions about 1st Day Class

Other Questions?
Try Lab 1 by yourself
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Threads, Blocks and Warps

Kernel Launch

1 kernel<<<blocks,threads>>>(res_dev, a_dev, b_dev);

What is block?
Why blocks/threads instead of just threads?
How many blocks/threads can we use?
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Threads, Blocks and Warps

What is a Block?

Threads are organized in Blocks.
Blocks are executed concurrently on SMs
Blocks have fast communication through shared memory
Hardware dispatches thread blocks to available processor



CIRC Summer School: CUDA on BlueHive
CUDA Programming Models

Threads, Blocks and Warps

What is a Block?



CIRC Summer School: CUDA on BlueHive
CUDA Programming Models

Threads, Blocks and Warps

What is a Blocks?
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Threads, Blocks and Warps

Why Blocks? – Automatic Scalability
Scalable programming model
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Threads, Blocks and Warps

How Many Threads/Blocks You May Use?

On Tesla K20X
Max Blocks executed concurrently per SMX: 16
Max Threads per SMX: 2048
Max Threads per Block: 1024
Could be changed in the future
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Threads, Blocks and Warps

Find the Index

1 int i = blockIdx.x * blockDim.x + threadIdx.x;
2 int j = blockIdx.y * blockDim.y + threadIdx.y;
3 int k = blockIdx.z * blockDim.z + threadIdx.z;

Special CUDA Variables
blockIdx: block Id
threadIdx: thread Id
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Threads, Blocks and Warps

Warps and SIMT

Thread blocks are executed as warps
A Warp is a group of threads within a block that are launched
together
The hardware schedules each warp independently
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Threads, Blocks and Warps

Warps and SIMT

Issue a single instruction to the threads in a warp: Single
Instruction Multiple Threads
The warp size is 32 threads
When a warp is selected for execution, all threads execute the
same instruction
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Threads, Blocks and Warps

Warps and SIMT

1 kernel1<<<N , 1>>>(...);
2 kernel2<<<N/32 , 32>>>(...);
3 kernel3<<<N/128 , 128>>>(...);

Block sizes for full warps
Thumb of Rule: pick up threads number as multiples of 32
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Threads, Blocks and Warps

Branch Divergence and Warps
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Threads, Blocks and Warps

Reviews on Terminology

Thread: Concurrent code and associated state executed on
the device. The fine grain unit of parallelism in CUDA.
Block: a group of threads that are executed together and
form the unit of resources assignment
Grid: a group of thread blocks that must all complete before
the next phase of the program can begin on the GPU
Warp: a group of threads (32) executed physically in parallel
in GPU.
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Memory Hierarchy
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Synchronization and Atomic Operations

Race Condition

When two or more threads want to access and operate on a
memory location without synchronization
solutions: synchronization between threads or atomic
operations
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Synchronization and Atomic Operations

Synchronization between Threads

1 __syncthreads();

Synchronization between threads in a block
Every thread in the block has arrived at this point in the
program
All loads have completed
All stores have completed

Can hang your program if used within an if, switch or loop
statement
Threads within a warp are implicitly synchronized
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Synchronization and Atomic Operations

Atomic Operations

Atomic operations deal with race conditions
It guarantees that while the operation is being executed, others
cannot access that location in memory
Still we cannot rely on any ordering of thread execution

Examples:

1 atomicAdd
2 atomicSub
3 atomicMin
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Lab 1: Data Transfer Time

In this lab, you’ll get some hands-on experience of CUDA coding
and compiling and running CUDA codes on the gpu nodes of
BlueHive. You will be examining some of the factors that affect the
performance of programs that use the graphics processing unit. In
particular, you’ll see the cost of transfering data back and forth to
the graphics card and how the different threads are joined together.
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Lab 1: Data Transfer Time

First we look at the time required to transfer data to the GPU and
back. Begin by creating a folder for yourself and copying the file:

1 $ mkdir Your CUDA Folder
2 $ cd Your CUDA Folder
3 $ cp /home/bliu17/SummerSchool/CUDA/Labs/

Lab1/∗ .

To compile the code, we need to load the cuda module
1 $ module load cuda/5.5/b1
2 $ nvcc −o addVectors addVectors.cu
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Lab 1: Data Transfer Time

And to run the job on BlueHive, we need to connect to a gpu node.
Since we can only use the head node to compile the code, it would
be convenient to use a different window or tab to run the job:

1 $ salloc −p graphics −−gres=gpu:1 −t 00:30:00
2 $ srun −−pty $SHELL −l
3 $ ./addVectors
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Lab 1: Data Transfer Time

You should get a printout with a time, which is how long the
program took to add two vectors ( of length 1,000,000). Record
the number.

1 $ time: 5.132576 ms
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Now let’s examine the code itself. Right near the top is the
definition of the function kernel:

1 __global__ void kernel(int* res, int* a, int* b) {
2 //function that runs on GPU to do the addition
3 //sets res[i] = a[i] + b[i]; each thread is

responsible for one value of i
4 int thread_id = threadIdx.x + blockIdx.x*blockDim.x;
5 if(thread_id < N) {
6 res[thread_id] = a[thread_id] + b[thread_id];
7 }
8 }

This is a pretty standard function to add the vectors a and b,
storing the sum into vector res.
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Lab 1: Data Transfer Time

Let’s see how this time breaks down between the data transfer
between the main system (called the host) and the graphics card.
Open the file and comment out the line that calls the kernel:

1 kernel<<<blocks,threads>>>(res_dev, a_dev, b_dev);

(This is the 3rd time ”kernel” appears in the file and occurs near
the middle of main.) Then recompile and run the program again.
Record the time. If you get errors recompiling the code on gpu
node, you may want to open another terminal and login to
BlueHive and compile the code there. Otherwise you will have to
cancel the job and recompile it on the login node. Then you will
need to connect to a gpu node gain and run it.
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Lab 1: Data Transfer Time

The program is now transferring the data back and forth, but not
actually performing the addition. You’ll see that the running time
hasn’t changed much. This program spends most of its time
transferring data because the computation does very little to each
piece of data and can do that part in parallel.
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Lab 1: Data Transfer Time

To see this another way, open the file again and uncomment the
kernel call and the verify paragraph. The comment out the lines
that transfer the data to the GPU; these are in the paragraph
commented as ”transfer a and b to the GPU” (use the search
function to find it). The modify the kernel to use thread id instead
of a[thread id] and b[thread id]. (The program initializes a[i] and
b[i] to both be i; see the ”set up contents of a and b” paragraph.)

1 //res[thread_id] = a[thread_id] + b[thread_id];
2 res[thread_id] = thread_id + thread_id;
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Lab 1: Data Transfer Time

The resulting program should be equivalent to the original one
except that instead of having the CPU initialize the vectors and
then copy them to the graphics card, the graphics card is using its
knowledge of their value to compute the sum, thus avoiding the
first data transfer. Recompile and rerun this program and record
the time.
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Lab 1: Data Transfer Time

Now the time is considerably less than the 3 milliseconds we
started with. (We’re no longer copying the two vectors, which are
each a million entries long...)
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Lab 2: Thread Divergence
In this Lab we will study the second factor affecting the
performance of GPU programs. Copy this file to your CUDA folder:

1 $ cd Your CUDA Folder
2 $ cp /home/bliu17/SummerSchool/CUDA/Labs/

Lab2/∗ .

This file contains two kernels, creatively named kernel 1 and
kernel 2. Examine them and verify that they should produce the
same result. Then compile and run on BlueHive:

1 $ nvcc −o divergence divergence.cu
2 $ salloc −p graphics −−gres=gpu:1 −t 00:30:00
3 $ srun −−pty $SHELL −l
4 $ ./divergence

Just like what we saw in Lab 1, it will print a time:
1 $ time: 2.060096 ms
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Lab 2: Branch Divergence

Then modify the code to use the other kernel, recompile and rerun.
You’ll see that the running times are quite different.

1 kernel_2<<<blocks,threads>>>(a_dev);
2 //kernel_1<<<blocks,threads>>>(a_dev);

1 $ time: 0.303872 ms

That there is a difference is not terribly surprising since the kernels
do use different code. To further explore this difference, change
the number of cases enumerated in kernel 2 (either delete some or
use cut-and-paste to add more). You’ll see that its running time
changes, which should not happen;switch statements typically have
running time independent of the number of cases since they’re just
a table lookup.
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Lab 2: Branch Divergence

The reason for the slowdown has to do with how the GPU cores
are organized. This organization is reflected in the grouping of
threads into warps. Every thread in a warp considers the same
instruction in each cycle. To allow for branches, the threads aren’t
required to all execute this instruction, but they spend their cycle
either executing it or performing a noop. When the threads in a
warp want to execute different instructions, the instruction being
considered cycles between those that each thread wants to
execute. Thus as the control flow causes the threads to split up,
each of them spends more cycles executing noops and the program
slows down.
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Lab 2: Branch Divergence

Turn on the commented ”print bucket contents” section of the
code and check the value of the array.
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Lab 3: Branch Divergence Revisit

In this Lab you are provided a program which is slightly different
from the one in Lab 2.

1 $ cp /home/bliu17/SummerSchool/CUDA/Labs/
Lab3/∗ .

Download the code
Compile and run on BlueHive2
Check the code difference from Lab 2.

1 a[cell]=cell+1;
2 //a[cell]++
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Lab 3: Branch Divergence Revisit

Turn on the code of ”print bucket contents”
Run the code with kernel1 and kernel2
Compare with results in Lab 2
Explain the results
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Lab 4: Memory Coalescing

Memory coalescing is a technique which allows optimal usage of
the global memory bandwidth. If the threads in a block are
accessing consecutive global memory locations, then all the
accesses could be combined into a single request (or coalesced) by
the hardware. This is an important tenique for devices with
compute capability 1.X or CUDA 1.0. Most recent GPU devices or
CUDA newer than 2.0 have more sophisticated global memory
access and the effect won’t be obvious.
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Lab 4: Memory Coalescing

In this lab you are provided a program coalescing.cu with different
memory access patterns. Download the code and scripts from

1 cp /home/bliu17/SummerSchool/CUDA/Labs/Lab4/∗ .

You will need to
Compile and execute the program on BlueHive
Change the code to make the memory access with threadID
sequentially along columns and see how things would change
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Lab 4

Here’s the results ran on one of the old GPUs for you to compare

with
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Lab 5: Shared Memory

Shared memory is fast but with limited size (48KB) comparing
with global memory. If your code has to access a piece of memory
many times put it in shared memory will dramatically improve the
performance. In this lab you are provided a program
sharedmemory.cu to test the effect of using shared memory.
Download the code and scripts from

1 cp /home/bliu17/SummerSchool/CUDA/Labs/Lab5/∗ .

And
Compile and execute the program on BlueHive
Understand the results and code
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Online Resources

cuda-zone: https://developer.nvidia.com/cuda-zone
cuda-toolkit: http://developer.nvidia.com/cuda/cuda-toolkit
online classes on youtube
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