
Bash Script

CIRC Winter Boot Camp 2015
Baowei Liu

Review of Linux
Users

Shell

Kernel

Hardware

Linux and Shells

https://en.wikipedia.org/wiki/

Bash Script

  Unix/Linux commands in a text file – batch
mode

  An executable program to be run by the
shell (Bash)

  Easy to edit: long command lines
  Reusable: many command lines or options
  Flexible and Efficient: Run with different

arguments.
  Easy to use with job scheduler

Shell Script VS. Command
Lines

Shell Script VS. Other Script
Language

  Easy to program: the commands and syntax
are exactly the same as those directly
entered at the command line. Quick start.

  Slow run speed comparing with other
programming languages

  Not easy for some tasks like floating point
calculations or math functions

Linux Commands

  ls: list directory contents
  cd: change directory
  man: manual
  echo

Linux Command echo

  Display a line of text
  Example: echo hello world
  “…” or ‘…’

To Write a Bash Script

  An editor: vi emacs, nano,….
  Specify interpreter as bash: #!/bin/bash
  Some Linux commands
  Comments: # (single line)
  Set executable permission

File permissions

  Three scopes and permissions
  Bash script has to have execute permission

to allow the operating system to run it.
  Check permissions: ls –l
  Change permissions: chmod

Bash Variables
  Create a variable: name=value
  No data type
  No need to declare but can be declared with

“declare command”
  No space allowed before and after =
  Use $ to refer to the value: $name

Environment Variables

  env
  $SHELL
  $PATH
  $LD_LIBRARY_PATH
  $RANDOM
  $USER

Variable Value

  Assign value: a=2
  Pass value: b=$a
  Display value: echo $a
  Multiple Variables
  Strong quoting & weak quoting

Assign Variable Value

  Parameter expansion ${}
  Command Substitution: $(), or `
  Arithmetic expansion: $((…))

Arithmetic Expression

  Arithmetic operators: + - * /
  Integer only
  Arithmetic Expansion ((…))
  Floating point calculation: other tools like

bc, or awk

Basic calculator: bc

  An arbitrary precision calculator language
  Simple usage: echo $a+$b | bc
  Can use math library: echo “s(0.4)” | bc

Stdin, stdout and stderr

  Stdin: standard in, data stream that is going
into a process

  Stdout: data stream coming from a running
process

  Stderr: data stream of error messages being
generated by a process

Redirect and Pipes

  Redirect between files including the three
file descriptors, stdin, stdout and stder: > >>

  Pipes takes the output of one command as
the input of another command |

Bash Script

CIRC Winter Boot Camp 2015
Baowei Liu

Questions after Day 1 Class

  Why we need bash script?
  Introduction to job schedulers: slurm, cron

Scenarios & Examples Using
Bash Script

  Multiple command lines / complicated
command lines: convert movie

  System monitoring tasks: back fill
  Run jobs periodically: revision monitor

Job Scheduler Slurm
  Slurm
 1. Free and open-source job scheduler
 2. Arbitrate resources by managing a queue

of pending jobs
 3. Examples for submitting jobs to our local

systems can be found on
info.circ.rochester.edu

http://en.wikipedia.org/wiki/Slurm_Workload_Manager

Job Scheduler Cron

  Time-based job scheduler
  Schedule the command to run with crontab

–e
  Each line of a crontab file represents a

job

Cron and Crontab
  Specify the time:
 * * * * * script/command
 min hr dom m dow(0-6)

  Specify every five hour
 * */5 * * * script/command
 0 0 1 1,6 * script/command

  Non standard macros
 @yearly @reboot …

Conditional Expression and if

  if [[conditional expression]]
 then
 ….
 else
 ….
 fi

Conditional Expression: Integers

  [[…]]
 1. White spaces around “[[“ and “]]” are

necessary
 2. [[$a -eq $b]]: -eq, -ne, -gt, -ge -lt, -le

Conditional Expression: Strings

  Compare strings: [[“$a” = “$b”]]
  operators = or ==, !=, >, < (alphabetical)
  White spaces around [[]] are necessary!!
  -n (not null), -z(null)

Conditional Expression

  Integers (Numeric Comparison): -eq, -ne, -
lt, -gt, -le, -ge

  Strings (Alphabetical Comparison): =, !=, <,
>, <=, >=

  > < for Integers ?

Compound Operators

  &&, ||

 if [[…]] && [[…]]
 then
 ….
 fi

Alternate Ways: Arithmetic
Expansion

http://mywiki.wooledge.org/
BashFAQ/031

  Arithmetic Expansion (($a > $b))
 ==, !=, <, <=, >, >=

  Old but more portable way [] or test

Compare Floating Point Numbers

  Use Basic Calculator: bc
 compare_results=`echo “$a>$b” | bc`
  Operators: ==, !=, >, >=, <, <=
  Convert to integer (Return 1 for True and 0

for False)
  Always check the command before using it!

Conditional Executions

  Command 1 && Command 2
  Command 1 || Command 2

Conditional Expression

  true and false commands
  Return values of Linux commands
 $?
  Shell true/false VS. Arithmetic true/false in

Arithmetic Expansion(())

Returns of Arithmetic Expansion

if the arithmetic expression brings up a value
not 0 (arithmetic true), it returns 0 (shell
true)

if the arithmetic expression evaluates to 0
(arithmetic false), it returns 1 (shell false)

Bash Script

CIRC Winter Boot Camp 2015
Baowei Liu

Shell Expansions Review

  Parameter Expansion: $variable, $
{variable}

  Arithmetic Expansion: $((expression))
  Command Substitution: $() or ``

Brace Expansion
  Brace expansion is used to generate an list.
  {string1, string2, …,stringN}
 space not allowed between braces!!!
  Range{<start>..<end>}: {1..20}
 space not allowed between braces!!
  Very first expansion to do !!
 {$a..$b}

Brace Expansion

  Preamble and Postscript
 a{1,3,4}b
 space is important!!!
  Combining and nesting
 {a,b,c}{1..3}
 {{a,b,c},{1..3}}
  Escaping backslash

Loop Constructs: for loop
  Basic Syntax
 for arg in [list]
 do
 …..
 done
  [list]:
 1. Brace Expansion (string or integer): {1..5}
 2. Command Substitution: `ls`
 3. Arithmetic Expansion?

for loop –Arithmetic Expansion

  Basic Syntax
for ((expr1; expr2; expr3))
do
 …
done

  Examples:
  White space are not important for

Arithmetic Expansion

Loop Constructs –while loop
  Conditional Expression
 while [[conditional expression]]
 do
 ….
 done

  Arithmetic Expansion
 while ((arithmetic expression))
 do
 …
 done

Loop Constructs –until loop
  Conditional Expression
 until [[conditional expression]]
 do
 ….
 done

  Arithmetic Expansion
 until ((arithmetic expression))
 do
 …
 done

Other Flow Control Constructs: case

 case expression in
 pattern1)
 statement;;
 pattern2)
 statement;;
 ….
 esac

;; and *

Filename Expansion / Globbing

  Expanding filenames containing special characters
  Wild cards * ?, not include . ..
  Square brackets [set]: “-”
  Special characters: ! (other than)
  Quote special pattern character if they are to be

matched literally
  Escaping backslash: protect a subsequent special

character

grep and Regular Expression

  grep: search for matches to a pattern in a
file and print the matched line to stdout

 grep PATTERN file
  Regular Expression: globbing pattern used

for text

Regular Expression

  . : Equivalent to ? in filename expansion
  .*: any string. Equivalent to * in filename

expansion
  * : zero or more times, a* will match a,aa,…

but not ab
  ^: starting with, ^ab
  $: ending with, ab$

Regular Expression

  []: “-”
  \< \>: exact word

sed and Regular Expressions

  sed ‘s/abc/xyz’ File: All occurrences
  sed ‘5,10s/abc/xyz’ File: specified lines
  sed ‘0~2 s/abc/xyz/’ File: only in the even

lines
  More complicated examples

Bash Script

CIRC Winter Boot Camp 2015
Baowei Liu

sed and Regular Expressions

  Word Characters: Alphanumeric characters
plus “_” [A-Za-z0-9_]

  Replace all occurrences in a line

awk

  A text-processing programming language in
Linux

  awk ‘{print $1}’
  Floating number calculations

wc

  wc: print the number of bytes, words and
lines in a file.

  -c
  -l
  -w

Arrays
  Array is a numbered list
  One-dimensional only
  Create an array with = and (), or declare –a
  Array element: ArrayName[index]
  Access elements: ${ArrayName[n]} @, *
  Array size:${#ArrayName([@])},${#ArrayName([*])}
  Initialize an array with brace expansion
  Delete array or element: unset ArrayName[n]
  Add element without key: ArrayName+=(...)

Strings and Manipulation

  Create a string
  Display a string
  Length of a string
  Substring: a Bash string just holds one element
  Compare strings
  Concatenate of string
  Substring extraction
  Substring replacement

Compare Strings

  =: [[“$a” = “$b”]], white space are
important!!

  !=
  >: alphabetically
  <: alphabetically
  -z check if the string is null /zero-length
  -n

Substring Extraction

  ${string:position:length}
  ${string:position}

Substring Removal

  ${string#substring}: regular expression
  ${string##substring}
  ${string%substring}
  ${string%%substring}

Substring Replacement

  ${string/substring/replacement}
  ${string//substring/replacement}
  ${string/#substring/replacement}
  ${string/%substring/replacement}

Functions
  Syntax
Function functname{
 commands….
 }
Function functname(){
 commands….
 }
  Pass Arguments
  Returning Values

File Manipulation

  Examine the status of a file
 -a file: True if file exists
 -s file: True if file exists and has a size greater than zero
 -f file: True if file exists and is a regular file

  Compare files
 file1 –nt file2: newer than
 file1 –ot file2: older than

Merge files

  join: merge files by a common column
  cat: merge files by rows

head and tail

  –n
  –c
  -f

Some Examples
  File name modifications
  Wrappers

