
Bash Script

CIRC Summer School 2015
Baowei Liu

Command Lines VS. Bash Script

  Unix/Linux commands in a text file
  A series of commands executed in batch

mode

Review of Linux
Users

Shell

Kernel

Hardware

Linux and Shells

https://en.wikipedia.org/wiki/

  Easy to edit: long command lines
  Record & reusable: many command lines or

options

  Flexible and Efficient: Run with different
arguments.

  Easy to use with job scheduler

Bash Script VS. Command Lines

  File manipulation

  Wrappers

Examples Using Bash Script –
Pipeline things

Shell Script VS. Other Script
Language

  Easy to program: the commands and syntax
are exactly the same as those directly
entered at the command line. Quick start.

  Slow run speed comparing with other
programming languages

  Not easy for some tasks like floating point
calculations or math functions

  Not friendly to use: error messages/white
space.

Linux Commands

  ls: list directory contents
  cd: change directory
  man: manual
  echo

Linux Command echo

  Display a line of text
  Example: echo hello world
  “…” or ‘…’

To Write a Bash Script

  An editor: vi emacs, nano,….
  Specify interpreter as bash: #!/bin/bash
  Some Linux commands
  Comments: # (single line)
  Set executable permission

File permissions and First Script

  Three scopes and permissions
  Bash script has to have execute permission

to allow the operating system to run it.
  Check permissions: ls –l
  Add execute permission: chmod +x
  First script

Bash Variables
  Create a variable: name=value
  No data type
  No need to declare but can be declared with

“declare command”
  No space allowed before and after =
  Use $ to refer to the value: $name

Environment Variables

  env
  $SHELL
  $PATH
  $LD_LIBRARY_PATH
  $RANDOM
  $USER

Variable Value

  Assign value: a=2
  Pass value: b=$a
  Display value: echo $a
  Multiple Variables
  Strong quoting & weak quoting

Assign Variable Value

  Parameter expansion ${}
  Command Substitution: $(), or `
  Arithmetic expansion: $((…))

Arithmetic Expression

  Arithmetic operators: + - * /
  Integer only
  Arithmetic Expansion ((…))
  Floating point calculation: other tools like

bc, or awk

Basic calculator: bc

  An arbitrary precision calculator language
  Simple usage: echo $a+$b | bc
  Can use math library: echo “s(0.4)” | bc –l

Conditional Expression and if

  If condition
 then
 ….
 else
 ….
 fi

Conditional Expression

  Integers (Numeric Comparison): (())
  operators ==, !=,>,<,>=,<=
  You can use standard C-language operators

inside (())
  white spaces are not necessary

Conditional Expression: Strings

  Compare strings: [[“$a” = “$b”]]
  operators = or ==, !=, >, < (careful!)
  White spaces around [[]] and operators are

necessary!!
 if [[$a=$b]]; then
 echo "$a=$b"
else
 echo "$a!=$b"
 fi

  -n (not null), -z(null)

Compound Operators

  &&, ||

 if [[…]] && [[…]]
 then
 ….
 fi

Alternate Ways: Arithmetic
Expansion

  Old but more portable way [] or test

Compare Floating Point Numbers

  Use Basic Calculator: bc
 compare_results=`echo “$a>$b” | bc`
 double quotation are important!!
  Operators: ==, !=, >, >=, <, <=
  Convert to integer (Return 1 for True and 0

for False)
  Always check the command before using it!

Shell Expansions Review

  Parameter Expansion: $variable, $
{variable}

  Arithmetic Expansion: $((expression))
  Command Substitution: $() or ``

Bash Script

CIRC Summer School 2015
Baowei Liu

Exit Status of Commands

A successful command returns 0 (shell true)
while an unsuccessful command returns
non-zero (shell false)

  Use echo $? To check the exit status
  true and false commands
  [[…]]; echo $?

Conditional Expression

 if command
 then
 …
fi

Conditional Executions &
Arguments

  Command 1 && Command 2
  Command 1 || Command 2

Brace Expansion
  Brace expansion is used to generate an list.
  {string1, string2, …,stringN}
 space not allowed between braces!!!
  Range{<start>..<end>}: {1..20}
  Very first expansion to do !!
 {$a..$b}

Brace Expansion

  Preamble and Postscript
 a{1,3,4}b
 space is important!!!
  Combining and nesting
 {a,b,c}{1..3}
 {{a,b,c},{1..3}}
  Escaping backslash

Loop Constructs: for loop
  Basic Syntax
 for arg in [list]
 do
 …..
 done
  [list]:
 1. Brace Expansion (string or integer): {1..5}
 2. Command Substitution: `ls`
 3. Arithmetic Expansion?

for loop –Arithmetic Expansion

  Basic Syntax
for ((expr1; expr2; expr3))
do
 …
done

  Examples:
  White space are not important for

Arithmetic Expansion

Loop Constructs –while loop
  Conditional Expression
 while [[conditional expression]]
 do
 ….
 done

  Arithmetic Expansion
 while ((arithmetic expression))
 do
 …
 done

Loop Constructs –until loop
  Conditional Expression
 until [[conditional expression]]
 do
 ….
 done

  Arithmetic Expansion
 until ((arithmetic expression))
 do
 …
 done

Functions
  Syntax
Function functname{
 commands….
 }
Function functname(){
 commands….
 }
  Pass Arguments
  Returning Values

Other Flow Control Constructs: case

 case expression in
 pattern1)
 statement;;
 pattern2)
 statement;;
 ….
 esac

;; and *

Bash Script

CIRC Summer School 2015
Baowei Liu

Filename Expansion / Globbing

  Expanding filenames containing special characters
  Wild cards * ?, not include . ..
  Square brackets [set]: “-”
  Special characters: ! (other than)
  Quote special pattern character if they are to be

matched literally
  Escaping backslash: protect a subsequent special

character

File Manipulation

  Examine the status of a file
 -a file: True if file exists
 -s file: True if file exists and has a size greater than zero
 -f file: True if file exists and is a regular file

  Compare files
 file1 –nt file2: newer than
 file1 –ot file2: older than

Merge files

  join: merge files by a common column
  cat: merge files by rows

Arrays
  Array is a numbered list
  One-dimensional only
  Create an array with = and (), or declare –a
  Array element: ArrayName[index]
  Access elements: ${ArrayName[n]} @, *
  Array size:${#ArrayName([@])},${#ArrayName([*])}
  Initialize an array with brace expansion
  Delete array or element: unset ArrayName[n]
  Add element without key: ArrayName+=(...)

Strings and Manipulation

  Create a string
  Display a string
  Length of a string
  Substring: a Bash string just holds one element
  Compare strings:
  Concatenate of string
  Substring extraction: position starting with 0
  Substring replacement

Compare Strings

  =: [[“$a” = “$b”]], white space are
important!!

  !=
  -z True if the string is null /zero-length
  -n True if the string is Not null

Substring Extraction

  ${string:position:length}
  ${string:position}

Substring Removal

  ${string#substring}
  ${string##substring}
  ${string%substring}
  ${string%%substring}

Substring Replacement

  ${string/substring/replacement}
  ${string//substring/replacement}
  ${string/#substring/replacement}
  ${string/%substring/replacement}

grep and Regular Expression

  grep: search for matches to a pattern in a
file and print the matched line to stdout

 grep PATTERN file
  Regular Expression: a sequence of

characters that define a search pattern,
mainly for string match -- globbing pattern
used for text

Regular Expression

  . : Equivalent to ? in filename expansion
  .*: any string. Equivalent to * in filename

expansion
  * : zero or more times, a* will match a,aa,…

but not ab
  ^: starting with, ^ab
  $: ending with, ab$

Regular Expression

  []: “[-]” “[^]”
  “\< >\” exact word

sed and Regular Expressions

  sed ‘s/abc/xyz’ File: All occurrences
  sed ‘5,10s/abc/xyz’ File: specified lines
  sed ‘0~2 s/abc/xyz/’ File: only in the even

lines
  More complicated examples

sed and Regular Expressions

  Word Characters: Alphanumeric characters
plus “_” [A-Za-z0-9_]

  Replace all occurrences in a line

awk

  A text-processing programming language in
Linux

  awk ‘{print $1}’
  Floating number calculations

head and tail

  –n
  –c
  -f

wc

  wc: print the number of bytes, words and
lines in a file.

  -c
  -l
  -w

Some Examples

Scenarios & Examples Using
Bash Script

  Multiple command lines / complicated
command lines: convert movie

  System monitoring tasks: back fill
  Run jobs periodically: revision monitor
  Wrappers

Job Scheduler Slurm
  Slurm
 1. Free and open-source job scheduler
 2. Arbitrate resources by managing a queue

of pending jobs
 3. Examples for submitting jobs to our local

systems can be found on
info.circ.rochester.edu

http://en.wikipedia.org/wiki/Slurm_Workload_Manager

Job Scheduler Cron

  Time-based job scheduler
  Schedule the command to run with crontab

–e
  Each line of a crontab file represents a

job

Cron and Crontab
  Specify the time:
 * * * * * script/command
 min hr dom m dow(0-6)

  Specify every five hour
 * */5 * * * script/command
 0 0 1 1,6 * script/command

  Non standard macros
 @yearly @reboot …

Stdin, stdout and stderr

  Stdin: standard in, data stream that is going
into a process

  Stdout: data stream coming from a running
process

  Stderr: data stream of error messages being
generated by a process

Redirect and Pipes

  Redirect between files including the three
file descriptors, stdin, stdout and stder: > >>

  Pipes takes the output of one command as
the input of another command |

