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 REFERENCES 

ORIGINAL PREFACE

These notes are based on a series of lectures given at the Radiation Laboratory in the summer of 1958. I wish to make clear my
lack of familiarity with the mathematical  literature and the corresponding lack of mathematical rigor  in this  presentation. The
primary  source  for  the  basic  material  and  approach  presented  here  was  Enrico  Fermi.  My  first  introduction  to  much  of  the
material here was in a series of discussions with Enrico Fermi, Frank Solmitz, and George Backus at the University of Chicago
in the autumn of 1953. I am grateful to Dr. Frank Solmitz for many helpful discussions and I have drawn heavily from his report
"Notes on the Least Squares and Maximum Likelihood Methods." [1] The general presentation will be to study the Gausssian
distribution,  binomial  distribution,  Poisson  distribution,  and  least-squares  method  in  that  order  as  applications  of  the
maximum-likelihood method. 

August 13, 1958 

PREFACE TO REVISED EDITION

Lawrence Radiation Laboratory has granted permission to reproduce the original UCRL-8417. This revised version consists of
the original version with corrections and clarifications including some new topics. Three completely new appendices have been
added. 

Jay Orear 
July 1982 

1. DIRECT PROBABILITY

Books have been written on the "definition" of probability.  We shall merely note  two properties:  (a )  statistical  independence
(events must be completely unrelated), and (b) the law of large numbers. This says that if p1 is the probability of getting an event

in Class 1 and we observe that N1 out of N events are in Class 1, then we have 

 

A common example of direct probability in physics is that in which one has exact knowledge of a final-state wave function (or
probability density). One such case is that in which we know in advance the angular distribution f (x), where x = cos  of a certain
scattering experiment, In this example one can predict with certainty that the number of particles that leave at an angle x1 in an

interval x1 is Nf (x1) x1, where N, the total number of scattered particles, is a very large number. Note that the function f(x) is

normalized to unity: 

 

As physicists, we call such a function a distribution function. Mathematicians call it a probability density function. Note that an
element of probability, dp, is 

 

2. INVERSE PROBABILITY

The more common problem facing a  physicist  is  that  he  wishes  to  determine  the  final-state  wave  function from experimental
measurements.  For  example,  consider  the  decay  of  a  spin-½  particle,  the  muon,  which  does  not  conserve  parity.  Because  of
angular-momentum conservation, we have the a priori knowledge that 
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However, the numerical value of  is some universal physical constant yet to be determined. We shall always use the subscript
zero to denote the true physical value of the parameter under question. It is the job of the physicist to determine 0. Usually the

physicist does an experiment and quotes a result   = * ± .  The major portion of this report is devoted to the questions
What  do  we  mean  by  *  and  ?  and  What  is  the  "best"  way  to  calculate  *  and  ?  These  are  questions  of  extrem
importance to all physicists. 

Crudely speaking,  is the standard deviation, [2] and what the physicist usually means is that the "probability" of finding 

 

(the  area  under  a  Gaussian  curve  out  to  one  standard  deviation).  The  use  of  the  word  "probability"  in  the  previous  sentence
would shock a mathematician. He would say the probability of having 

 

The kind of probability the physicist is talking about here we shall call inverse probability, in contrast to the direct probability
used  by the  mathematician.  Most  physicists  use  the  same  word,  probability,  for  the  two  completely different  concepts:  direct
probability and inverse probability.  In the remainder of this report we will conform to this sloppy physicist-usage of the word
"probability." 

3. LIKELIHOOD RATIOS

Suppose  it  is  known  that  either  Hypothesis  A  or  Hypothesis  B  must  be  true.  And  it  is  also  known  that  if  A  is  true  the
experimental distribution of the variable x must be fA(x), and if B is true the distribution is fB(x). For example, if Hypothesis A is

that the K meson has spin zero, and hypothesis B that it has spin 1, then it is "known" that fA(x) = 1 and fB(x) = 2x, where x is

the kinetic energy of the decay - divided by its maximum value for the decay mode K+ -> - + 2 +. 

If A is true, then the joint probability for getting a particular result of N events of values x1, x2,..., xN is 

 

The likelihood ratio is 

 
(1) 

This is the probability, that the particular experimental result of N events turns out the way it did, assuming A is true, divided by
the  probability  that  the  experiment  turns  out  the  way it  did,  assuming  B  is  true.  The  foregoing  lengthy sentence  is  a  correct
statement using direct probability. Physicists have a shorter way of saying it by using inverse probability. They say Eq. (1) is the
betting odds of A against B. The formalism of inverse probability assigns inverse probabilities whose ratio is the likelihood ratio
in the case in which there exist no prior probabilities favoring A or B. [3] All the remaining material in this report is based on
this basic principle alone. The modifications applied when prior knowledge exists are discussed in Sec. 10. 

An important job of a physicist planning new experiments is to estimate beforehand how many events he will need to "prove" a
hypothesis. Suppose that for the K+ -> - + 2 + one wishes to establish betting odds of 104 to 1 against spin 1. How many events
will be needed for this? The problem and the general procedure involved are discussed in Appendix I: Prediction of Likelihood
Ratios. 

4. MAXIMUM-LIKELIHOOD METHOD

The preceding section was devoted to the case in which one had a discrete set of hypotheses among which to choose. It is more
common in physics to have an infinite set of hypotheses; i.e., a parameter that is a continuous variable. For example, in the µ -e
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decay distribution 

 

the possible  values for 0  belong to a  continuous rather than a  discrete set.  In this case, as before,  we invoke the same basic

principle  which  says  the  relative  probability  of  any  two  different  values  of   is  the  ratio  of  the  probabilities  of  getting our
particular  experimental  results,  x i ,  assuming first  one and then the other,  value of  is true. This probability function of  is

called the likelihood function, ( ). 

 
    (2) 

The  likelihood  function,  ( ),  is  the  joint  probability  density  of  getting  a  particular
experimental  result,  x 1 ,  ...  ,  x n ,  assuming  f  ( ; x )  is  the  true  normalized  distribution

function: 

 

The  relative  probabilities  of   can  be  displayed  as  a  plot  of  ( )  vs.  .  The  most  probable  value  of   is  called  t
maximum-likelihood solution *. The rms (root-mean-square) spread of  about * is a conventional measure of the accuracy
of the determination  = * . We shall call this . 

 
    (3) 

In general, the likelihood function will be close to Gaussian (it can be shown to approach a Gaussian distribution as N -> ) and
will look similar to Fig. 1b. 

Fig. 1a represents what is called a case of poor statistics. In such a case, it is better to present a plot of ( ) rather than merely
quoting * and . Straightforward procedures for obtaining  are presented in Sections 6 and 7. 

Figure 1. Two examples of likelihood functions ( ). 

A confirmation of this inverse probability approach is the Maximum-Likelihood Theorem, which is proved in Cramer [4] by use
of direct probability.  The theorem states that  in the limit of large N ,  * -> 0; and furthermore, there is no other method of

estimation that is more accurate. 

In the general case in which there are M parameters, 1, ..., M, to be determined, the procedure for obtaining the maximum

likelihood solution is to solve the M simultaneous equations, 
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    (4) 

5. GAUSSIAN DISTRIBUTIONS

As a first application of the maximum-likelihood method, we consider the example of the measurement of a physical parameter 

0 ,  where  x  is  the  result  of  a  particular  type  of  measurement  that  is  known  to  have  a  measuring  error  .  Then  if  x  i

Gaussian-distributed, the distribution function is 

 

For a set of N measurements xi, each with its own measurement error i the likelihood function is 

 

then 

 

    (5) 

The maximum-likelihood solution is 

 

    (6) 

Note that the measurements must be weighted according to the inverse squares of their errors. When all the measuring errors are
the same we have 

 

Next we consider the accuracy of this determination. 

6. MAXIMUM-LIKELIHOOD ERROR, ONE PARAMETER

It can be shown that for large N, ( ) approaches a Gaussian distribution. To this approximation (actually the above example
is always Gaussian in ), we have 

 

where 1 / h is the rms spread of  about *, 
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Since  as defined in Eq. (3) is 1 / h , we have 

 
    (7) 

It is also proven in Cramer [4] that no method of estimation can give an error smaller than that of Eq. 7 (or its alternate form Eq.
8). Eq. 7 is indeed very powerful and important. It should be at the fingertips of all physicists. Let us now apply this formula to
determine the error associated with * in Eq. 6. We differentiate Eq. 5 with respect to . The answer is 

 

Using this in Eq. 7 gives 

 

This formula is commonly known as the law of combination of errors and refers to repeated measurements of the same quantity
which are Gaussian-distributed with "errors" i. 

In many actual problems, neither * nor  may be found analytically. In such cases the curve ( ) can be found numerically

by trying several values of  and using Eq. (2) to get the corresponding values of ( ). The complete function is then obtained

by drawing a smooth curve through the points. If ( ) is Gaussian-like, ð2w / ð 2 is the same everywhere. If not, it is best to
use the average 

 

A plausibility argument for using the above average goes as follows: If the tails of ( ) drop off more slowly than Gaussian

tails,  is smaller than 

 

Thus, use of the average second derivative gives the required larger error. 

Note that use of Eq. 7 for  depends on having a particular experimental result before the error can be determined. However,
it  is often important in the design of experiments to be able to estimate in advance how many data will be needed in order to
obtain a given accuracy. We shall now develop an alternate formula for the maximum-likelihood error, which depends only on
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knowledge  of  f  ( ;  x ).  Under  these  circumstances  we  wish  to  determine   averaged  over  many  repeated  experiments

consisting of N events each. For one event we have 

 

for N events 

 

This can be put in the form of a first derivative as follows: 

 

The last integral vanishes if one integrates before the differentiation because 

 

Thus 

 

and Eq. (7) leads to 

 

    (8) 

Example 1 

Assume in the µ -e decay distribution function, f ( ; x) = (1 +  x) / 2 , that 0 = - 1/3. How many µ -e decays are needed to

establish a to a 1% accuracy (i.e.,  /  = 100)? 
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Note that 

 

For 

 

For this problem 

 

7. MAXIMUM-LIKELIHOOD ERRORS, M-PARAMETERS CORRELATED ERRORS

When M  parameters  are  to  be determined  from a single  experiment  containing N  events,  the error  formulas of the  preceding
section are applicable only in the rare case in which the errors are uncorrelated.. Errors are uncorrelated only for 

 = 0 for all cases with i  j. For the general case we Taylor-expand w( ) about ( *): 

 

where 

 

and 

 
    (9) 

The second term of the expansion vanishes because ðw / ð  = 0 are the equations for * 

 

Neglecting the higher-order terms, we have 

 

(an M-dimensional Gaussian surface). As before, our error formulas depend on the approximation that ( ) is Gaussian-like in
the region i  i*. As mentioned in Section 4, if the statistics are so poor that this is a poor approximation, then one should

merely present a plot of ( ). (see Appendix IV). 

According to Eq. (9), H is a symmetric matrix. Let U be the unitary matrix that diagonalizes H: 
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    (10) 

Let  and . The element of probability in the -space is 

 

Since |U| = 1 is the Jacobian relating the volume elements dM  and dM , we have 

 

Now that the general M-dimensional Gaussian surface has been put in the form of the product of independent one-dimensional
Gaussians we have 

 

Then 

 

According to Eq. (10), H = U-1 . h . U, so that the final result is 

 

Maximum 
Likelihood 
Errors, 
M parameters   (11) 

(A rule for calculating the inverse matrix H-1 is 

 

If  we  use the alternate  notation V  for  the  error  matrix H -1 ,  then whenever  H  appears,  it  must  be replaced  with V -1 ;  i.e.,  the
likelihood function is 

 
    (11a) 
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Example 2 

Assume that the ranges of monoenergetic particles are Gaussian-distributed with mean range 1 and straggling coefficient 2
(the standard deviation). N particles having ranges x1,..., xN are observed. Find 1*, 2*, and their errors . Then 

 

 

The maximum-likelihood solution is obtained by setting the above two equations equal to zero. 

 

The reader may remember a standard-deviation formula in which N is replaced by (N - 1): 

 

This is because in this case the most probable value, 2*, and the mean, 2 , do not occur at the same place. Mean values of

such quantities are studied in Section 16. The matrix H is obtained by evaluating the following quantities at 1* and 2*: 

 

According to Eq. (11), the errors on 1 and 2 are the square roots of the diagonal elements of the error matrix, H-1: 

 

(this is sometimes called the 
error of the error). 

We note that the error of the mean is 1/sqrt[N]  where  = 2 is the standard deviation. The error on the determination of  is

/sqrt[2N]. 
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Correlated Errors 

The matrix Vij   is defined as the error matrix (also called the covariance matrix of ). In Eq. 11 we have

shown that V = H-1 where Hij = - ð2 w / (ð i ð j). The diagonal elements of V are the variances of the 's. If all the off-diagonal

elements are zero, the errors in  are uncorrelated as in Example 2. In this case contours of constant w plotted in ( 1, 2) space

would be ellipses as shown in Fig. 2a. The errors in 1 and 2 would be the semi-major axes of the contour ellipse where w has

dropped by ½ unit from its maximum-likelihood value. Only in the case of uncorrelated errors is the rms error j = (Hjj)
-½ and

then there is no need to perform a matrix inversion. 

Figure 2. Contours of constant w as a function of 1 and 2. Maximum

likelihood solution is at w = w*. Errors in 1 and 2 are obtained from

ellipse where w = (w* - ½). 
(a) Uncorrelated errors. 
(b) Correlated errors. In either case 1

2 = V11 = (H-1)11 and 2
2 =

V22 = (H-1)22. Note that it would be a serious mistake to use the ellipse

"halfwidth" rather than the extremum for . 

In  the  more  common  situation  there  will  be  one  or  more  off-diagonal  elements  to  H  and  the  errors  are  correlated  ( V  has
off-diagonal elements). In this case (Fig. 2b) the contour ellipses are inclined to the 1, 2 axes. The rms spread of 1 is still 

1 = sqrt[V11], but it is the extreme limit of the ellipse projected on the 1-axis. (The ellipse "halfwidth" axis is (H11)-½ which is

smaller.) In cases where Eq. 11 cannot be evaluated analytically, the *'s can be found numerically and the errors in  can be
found by Plotting the ellipsoid where w is 1/2 unit less than w *  . The extremums of this ellipsoid are the rms error in the 's.
One  should  allow all  the  j  to  change  freely  and  search  for  the  maximum change  in  i  which  makes  w  =  ( w  *  -  ½).  This

maximum change in i, is the error in i and is sqrt[V11]. 

8. PROPAGATION OF ERRORS: THE ERROR MATRIX

Consider the case in which a single physical quantity, y, is some function of the 's: y = y( 1, ..., M). The "best" value for y is

then y* = y( i*). For example y could be the path radius of an electron circling in a uniform magnetic field where the measured

quantities are 1 = , the period of revolution, and 2 = v,  the electron velocity.  Our goal is to find the error in y given the

errors in . To first order in ( i - i*) we have 

 

    (12) 
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A well-known special case of Eq. (12), which holds only when the variables are completely uncorrelated, is 

 

In the example of orbit radius in terms of  and v this becomes 

 

in the case of uncorrelated errors. However, if  is non-zero as one might expect, then Eq. (12) gives 

 

It is a common problem to be interested in M physical parameters, y1, ..., yM, which are known functions of the i. In fact the yi
can be thought of as a new set of i or a change of basis from i to yi. If the error matrix of the i is known, then we have 

 
    (13) 

In some such cases the ðyi / ð a cannot be obtained directly, but the ð i / ðya are easily obtainable. Then 

 

Example 3 

Suppose one wishes to use radius and acceleration to specify the circular orbit of an electron in a uniform magnetic field; i.e., y1
= r and y2 = a. Suppose the original measured quantities are 1 =  = (10 ± 1)µs and 2 = v = (100 ± 2) km/s. Also since the

velocity measurement depended on the time measurement, there was a correlated error  = 1.5 × 10-3 m. Find r, r, a,
a. 

Since r = v  / 2  = 0.159 m and a = 2 v /  = 6.28 × 1010 m/s2 we have y1 = 1 2 / 2  and y2 = 2  2 / 1. Then ðy1 / ð 1 = 

2 / 2 , ðy1 / ð 2 = 1 / 2 , ðy2 / ð 1 = -2 2 / 1
2, ðy2 / ð 2 = 2  / 1 . The measurement errors specify the error matrix as 

 

Eq. 13 gives 

 

Thus r = (0.159 ± 0.184) m 
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For y2, Eq. 13 gives 

 

Thus a = (6.28 ± 0.54) × 1010 m/s2. 

9. SYSTEMATIC ERRORS

"Systematic effects" is a general category which includes effects such as background, selection bias, scanning efficiency, energy
resolution, angle resolution, variation of counter efficiency with beam position and energy, dead time, etc. The uncertainty in the
estimation of such a systematic effect is called a "systematic error". Often such systematic effects and their errors are estimated
by separate experiments designed for that specific purpose. In general, the maximum-likelihood method can be used in such an
experiment  to  determine  the  systematic  effect  and  its  error.  Then  the  systematic  effect  and  its  error  are  folded  into  the
distribution function of the main experiment. Ideally, the two experiments can be treated as one joint experiment with an added
parameter M+1 to account for the systematic effect. 

In some cases a systematic effect cannot be estimated apart from the main experiment. Example 2 can be made into such a case.
Let  us  assume  that  among  the  beam  of  mono-energetic  particles  there  is  an  unknown  background  of  particles  uniformly
distributed in range. In this case the distribution function would be 

 

where 

 

The solution 3* is simply related to the percentage of background. The systematic error is obtained using Eq. 11. 

10. UNIQUENESS OF MAXIMUM-LIKELIHOOD SOLUTION

Usually it is a matter of taste what physical quantity is chosen as . For example, in a lifetime experiment some workers would
solve for the lifetime, *, while others would solve for *, where  = 1/ . Some workers prefer to use momentum, and others
energy, etc. Consider the case of two related physical parameters  and . The maximum-likelihood solution for  is obtained
from the equation ðw / ð  = 0. The maximum-likelihood solution for  is obtained from ðw / ð  = 0. But then we have 

 

Thus  the  condition  for  the  maximum-likelihood  solution  is  unique  and  independent  of  the  arbitrariness  involved  in  choice of
physical parameter. A lifetime result * would be related to the solution * by * = 1/ *. 

The basic shortcoming of the maximum-likelihood method is what to do about the prior probability of . If the prior probability
of  is G( ) and the likelihood function obtained for the experiment alone is ( ), then the joint likelihood function is 
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give the maximum-likelihood solution. In the absence of any prior knowledge the term on the right-hand side is zero. In other
words, the standard procedure in the absence of any prior information is to use a prior distribution in which all values of  are
equally probable.  Strictly  speaking,  it  is  impossible  to  know a  "true"  G ( ),  because  it  in  turn  must  depend  on its  own prior
probability. However, the above equation is useful when G( ) is the combined likelihood function of all previous experiments
and ( ) is the likelihood function of the experiment under consideration. 

There is a class of problems in which one wishes to determine an unknown distribution in , G( ), rather than a single value .
For example, one may wish to determine the momentum distribution of cosmic ray muons. Here one observes 

 

where ( ; x) is known from the nature of the experiment and G( ) is the function to be determined. This type of problem is
discussed in Reference 5. 

11. CONFIDENCE INTERVALS AND THEIR ARBITRARINESS

So far we have worked only in terms of relative probabilities and rms values to give an idea of the accuracy of the determination 
 = *. One can also ask the question, What is the probability that  lies between two certain values such as ' and "? This is

called a confidence interval, 

 

Unfortunately such a probability depends on the arbitrary choice of what quantity is chosen for . To show this consider the area

under the tail of ( ). 

 

Figure 3. Shaded area is P(  > '). (Sometimes called the confidence limit of 
'.) 

If  = ( ) had been chosen as the physical parameter instead, the same confidence interval is 
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Thus, in general, the numerical value of a confidence interval depends on the choice of the physical parameter. This is also true
to  some  extent  in  evaluating  .  Only the  maximum likelihood  solution  and  the  relative  probabilities  are  unaffected  by the
choice of . For Gaussian distributions, confidence intervals can be evaluated by using tables of the probability integral. Tables
of cumulative binomial distributions and cumulative Poisson distributions are also available. Appendix V contains a plot of the
cumulative Gaussian distribution. 

12. BINOMIAL DISTRIBUTION

Here  we  are  concerned  with  the  case  in  which  an  event  must  be  one  of  two  classes,  such  as  up  or  down,  forward  or  back,
positive or negative, etc. Let p be the probability for an event of Class 1. Then (1 - p) is the probability for Class 2, and the joint
probability for observing N1 events in Class 1 out of N total events is 

 

The binomial 
distribution 

    (14) 

Note that j=1
N p(j, N) = [p + (1 - p)]N = 1. The factorials correct for the fact that we are not interested in the order in which the

events occurred. For a given experimental result of N1 out of N events in Class 1, the likelihood function (p) is then 

 

    (15) 

 
    (16) 

From Eq. (15) we have 

 
    (17) 

From (16) and (17): 

 

    (18) 

The results, Eqs. (17) and (18), also happen to be the same as those using direct probability. Then 
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and 

 

Example 4 

In Example 1 on the µ-e decay angular distribution we found that 

 

is the error on the asymmetry parameter . Suppose that the individual cosine, xi, of each event is not known. In this problem all

we know is the number up vs. the number down. What then is ? Let p  be the probability of a decay in the up hemisphere;
then we have 

 

By Eq. (18), 

 

For small  this is  = sqrt[4 / N] as compared to sqrt[3 / N] when the full information is used. 

13. POISSON DISTRIBUTION

A common type of problem which falls into this category is the determination of a cross section or a mean free path. For a mean
free path , the probability of getting an event in an interval dx is dx / . Let P(0, x) be the probability of getting no events in a
length x. Then we have 

 

    (19) 

Let P(N, x) be the probability of finding N events in a length x. An element of this probability is the joint probability of N events
at dx1, ..., dxN times the probability of no events in the remaining length: 

 
    (20) 

The entire probability is obtained by integrating over the N-dimensional space. Note that the integral 
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does the job except that the particular probability element in Eq. (20) is swept through N! times. Dividing by N! gives 

 

the Poisson 
distribution 

    (21) 

As a check, note 

 

Likewise it can be shown that  =  . Equation (21) is often expressed in terms of : 

 

the Poisson 
distribution 

    (22) 

This form is useful in analyzing counting experiments. Then the "true" counting rate is . 

We  now  consider  the  case  in  which,  in  a  certain  experiment,  N  events  were  observed.  The  problem  is  to  determine  the
maximum-likelihood solution for    and its error: 

 

Thus we have 

 

and by Eq. (7), 

 

In a cross-section determination, we have  = x , where  is the number of target nuclei per cm3 and x is the total path length.

Then 

 

In conclusion we note that    : 
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14. GENERALIZED MAXIMUM-LIKELIHOOD METHOD

So far we have always worked with the standard maximum-likelihood formalism, whereby the distribution functions are always
normalized to unity. Fermi has pointed out that the normalization requirement is not necessary so long as the basic principle is
observed:  namely,  that  if  one  correctly  writes  down  the  probability  of  getting  his  experimental  result,  then  this  likelihood
function gives the relative probabilities of the parameters in question. The only requirement is that the probability of getting a
particular result be correctly written. We shall now consider the general case in which the probability of getting an event in dx is
F(x)dx, and 

 

is  the average number  of events one would get  if the same experiment  were repeated many times. According to  Eq. (19),  the
probability of getting no events in a small finite interval x is 

 

The probability of getting no events in the entire interval xmin < x < xmax is the product of such exponentials or 

 

The element of probability for a particular experimental result of N events at x = x1, ... , xN is then 

 

Thus we have 

 

and 

 

The solutions i = i* are still given by the M simultaneous equations: 
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The errors are still given by 

 

where 

 

The only change is that N no longer appears explicitly in the formula 

 

A derivation similar to that used for Eq. (8) shows that N is already taken care of in the integration over F(x). 

In a private communication, George Backus has proven, using direct probability,  that the Maximum-Likelihood Theorem also
holds for this generalized maximum-likelihood method and that in the limit of large N there is no method of estimation that is
more accurate. Also see Sect. 9.8 of Ref. 6. 

In the absence of the generalized maximum-likelihood method our procedure would have been to normalize F( ; x) to unity by
using 

 

For  example,  consider  the sample containing just  two radioactive species,  of lifetimes 1  and 2 .  Let 3  and 4  be the two

initial decay rates. Then we have 

 

where x is the time. The standard method would then be to use 

 

which is normalized to one. Note that the four original parameters have been reduced to three by using 5  4 / 3. Then 3
and 4 would be found by using the auxiliary equation 

 

the total number of counts. In this standard procedure the equation 

 

must always hold. However, in the generalized maximum-likelihood method these two quantities are not necessarily equal. Thus
the generalized maximum-likelihood method will give a different solution for the i, which should, in principle, be better. 
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Another  example  is  that  the  best  value  for  a  cross  section  is  not  obtained  by the  usual  procedure  of  setting  L  =  N  (the

number  of  events  in  a  path  length  L ).  The  fact  that  one  has  additional  prior  information  such  as  the  shape  of  the  angular
distribution enables one to do a somewhat better job of calculating the cross section. 

15. THE LEAST-SQUARES METHOD

Until now we have been discussing the situation in which the experimental result is N events giving precise values x1, ... , xN
where the xi may or may not, as the case may be, be all different. 

From  now  on  we  shall  confine  our  attention  to  the  case  of  p  measurements  (not  p  events)  at  the  points  x 1 ,  ...  ,  x p .  The

experimental results are (y1 ± 1), ... ,(yp ± p). One such type of experiment is where each measurement consists of Ni events.

Then yi = Ni and is Poisson-distributed with i = sqrt[Ni]. In this case the likelihood function is 

 

and 

 

We use the notation ( i; x) for the curve that is to be fitted to the experimental points. The best-fit curve corresponds to i =

i*. In this case of Poisson-distributed points, the solutions are obtained from the M simultaneous equations 

 

If all  the N i >> 1, then it is a good approximation to assume each y i is Gaussian-distributed with standard deviation i . (It  is

better to use i rather than Ni for i
2 where i can be obtained by integrating (x) over the ith interval.) Then one can use the

famous least squares method. 

The remainder of this section is devoted to the case in which yi are Gaussian-distributed with standard deviations i. See Fig. 4.

We  shall  now  see  that  the  least-squares  method  is  mathematically  equivalent  to  the  maximum  likelihood  method.  In  this
Gaussian case the likelihood function is 

 

    (23) 

where 

 
    (24) 
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Figure  4.  ( x )  is  a  function  of  known  shape  to  be  fitted  to  the  7
experimental points. 

The solutions i = i* are given by minimizing S( ) (maximizing w): 

 
    (25) 

This  minimum value  of  S  is  called  S *,  the  least  squares  sum.  The  values  of  i  which minimize  are  called  the  least-squares

solutions. Thus the maximum-likelihood and least-squares solutions are identical. According to Eq. (11), the least-squares errors
are 

 

Let us consider the special case in which ( i; x) is linear in the i: 

 

(Do not confuse this f (x) with the f (x) on page 2.) 

Then 

 

    (26) 

Differentiating with respect to j gives 

 
    (27) 

Define 

 
    (28) 
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Then 

 

In matrix notation the M simultaneous equations giving the least-squares solution are 

 
    (29) 

is the solution for the *'s. The errors in  are obtained using Eq. 11. To summarize: 

 

    (30) 

Equation (30) is the complete procedure for calculating the least squares solutions and their errors. Note that even though this
procedure  is  called  curve-fitting  it  is  never  necessary  to  plot  any  curves.  Quite  often  the  complete  experiment  may  be  a
combination of several  experiments in  which several  different  curves (all  functions of the i )  may be jointly fitted.  Then the

S-value is the sum over all the points on all the curves. Note that since w( *) decreases by ½ unit when one of the j has the

value ( i* ± j), the S-value must increase by one unit. That is, 

 

Example 5 Linear regression with equal errors 

(x) is known to be of the form (x) = 1 + 2x. There are p experimental measurements (yj ± ).Using Eq. (30) we have 

 

These are the linear regression formulas which are programmed into many pocket calculators. They should not be used in those
cases where the i are not all the same. If the i are all equal, the errors 
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or 

 

Example 6 Quadratic regression with unequal errors 

The  curve  to  be  fitted  is  known  to  be  a  parabola.  There  are  four  experimental  points  at  x  =  -  0.6,  -  0.2,  0.2,  and  0.6.  The
experimental results are 5 ± 2, 3 ± 1, 5 ± 1, and 8 ± 2. Find the best-fit curve. 

 

 

 

 

(x) = (3.685 ± 0.815) + (3.27 ± 1.96)x + (7.808 ± 4.94)x2 is the best fit curve. This is shown with the experimental points in

Fig. 5. 

Figure  5.  This  parabola  is  the  least  squares  fit  to  the  4
experimental points in Example 6. 
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Example 7 

In example 6 what is the best estimate of y at x = 1? What is the error of this estimate? 

Solution: Putting x = 1 into the above equation gives 

 

y is obtained using Eq. 12. 

 

Setting x = 1 gives 

 

So at x = 1, y = 14.763 ± 5.137. 

Least Squares When the yi are Not Independent 

Let 

 

be the error matrix-of the y measurements. Now we shall treat the more general case where the off diagonal elements need not be
zero; i.e., the quantities yi are not independent. We see immediately from Eq. 11a that the log likelihood function is 

 

The maximum likelihood solution is found by minimizing 

 
where 

 

Generalized least squares sum 

16. GOODNESS OF FIT, THE 2DISTRIBUTION

The  numerical  value  of  the  likelihood  function  at  ( *)  can,  in  principle,  be  used  as  a  check  on  whether  one  is  using  the
correct type of function for f ( ; x). If one is using the wrong f, the likelihood function will be lower in height and of greater

width. In principle, one can calculate, using direct probability, the distribution of ( *) assuming a particular true f ( 0, x).

Then the probability of getting an ( *) smaller than the value observed would be a useful indication of whether the wrong
type of function for f had been used. If for a particular experiment one got the answer that there was one chance in 104 of getting

such a low value of ( *), one would seriously question either the experiment or the function f ( ;x) that was used. 

In  practice,  the  determination  of  the  distribution  of  ( *)  is  usually  an  impossibly  difficult  numerical  integration  in
N-dimensional space. However,  in the special case of the least-square problem, the integration limits turn out to be the radius

vector in p-dimensional space. In this case we use the distribution of S( *) rather than of ( *). We shall first consider the
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distribution of S( 0). According to Eqs. (23) and (24) the probability element is 

 

Note that S = 2, where  is the magnitude of the radius vector in p-dimensional space. The volume of a p-dimensional sphere is

U  p. The volume element in this space is then 

 

Thus 

 

The normalization is obtained by integrating from S = 0 to S = . 

 
    (30a) 

where S  S( 0). 

This distribution is the well-known 2 distribution with p degrees of freedom. 2 tables of 

 

for several degrees of freedom are commonly available - see Appendix V for plots of the above integral. 

From the definition of S (Eq. (24)) it is obvious that 0 = p. One can show, using Eq. (29) that  = 2p. Hence, one

should be suspicious if his experimental result gives an S-value much greater than 

 

Usually  is not known. In such a case one is interested in the distribution of 

 

Fortunately, this distribution is also quite simple. It is merely the 2 distribution of (p - M) degrees of freedom, where p is the
number of experimental points, and M is the number of parameters solved for. Thus we haved 

 

    (31) 

Since the derivation of Eq. (31) is somewhat lengthy, it is given in Appendix II. 

Example 8 

Determine the 2 probability of the solution to Example 6. 
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According to the 2 table for one degree of freedom the probability of getting S* > 0.674 is 0.41. Thus the experimental data are
quite consistent with the assumed theoretical shape of 

 

Example 9 Combining Experiments 

Two different laboratories have measured the lifetime of the K1
0 to be (1.00 ± 0.01) × 10-10 sec and (1.04 ± 0.02) × 1010 sec

respectively. Are these results really inconsistent? 

According to Eq. (6) the weighted mean is * = 1.008 × 10-10 sec. (This is also the least squares solution for KO. 

Thus 

 

According  to  the  2  table  for  one  degree  of  freedom,  the  probability  of  getting  S *  >  3.2  is  0.074.  Therefore,  according  to
statistics, two measurements of the same quantity should be at least this far apart 7.4% of the time. 

APPENDIX I: PREDICTION OF LIKELIHOOD RATIOS

An important job for a physicist who plans new experiments is to estimate beforehand just how many events will be needed to
"prove"  a  certain  hypothesis.  The  usual  procedure  is  to  calculate  the  average  logarithm  of  the  likelihood  ratio.  The  average
logarithm is better behaved mathematically than the average of the ratio itself. We have 

 
    (32) 

or 

 

Consider the example (given in Section 3) of the K+ meson. We believe spin zero is true, and we wish to establish betting odds
of 104 to 1 against spin 1. How many events will be needed for this? In this case Eq. (32) gives 

 

Thus about 30 events would be needed on the average. However, if one is lucky, one might not need so many events. Consider
the extreme case of just one event with x = 0 :  would then be infinite and this one single event would be complete proof in

itself that the K+ is spin zero. The fluctuation (rms spread) of log  for a given N is 
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APPENDIX II: DISTRIBUTION OF THE LEAST-SQUARES SUM

We shall define the vector Zi  yi / i and the matrix Fij  fj(xi) / i. 

Note that H = FT . F by Eq. (27), 

     (33) 

Then 

 

    (34) 

where the unstarred  is used for 0. 

 

using Eq. (34). The second term on the right is zero because of Eq. (33). 

     (34) 

Note that 

 

If qi is an eigenvalue of Q, it must be equal qi
2, an eigenvalue of Q2. Thus qi = 0 or 1. The trace of Q is 

 

Since the trace of a matrix is invariant under a unitary transformation, the trace always equals the sum of the eigenvalues of the
matrix. Therefore M of the eigenvalues of Q are one, and (p - M) are zero. Let U be the unitary matrix which diagonalizes Q
(and also (1 - Q)). According to Eq. (35), 
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Thus 

 

where S* is the square of the radius vector in (p - M)-dimensional space. By definition (see Section 16) this is the 2 distribution
with (p - M) degrees of freedom. 

APPENDIX III. LEAST SQUARES WITH ERRORS IN BOTH VARIABLES

Experiments  in  physics  designed  to  determine  parameters  in  the  functional  relationship  between quantities  x  and  y  involve  a
series of measurements of x and the corresponding y. In many cases not only are there measurement errors yi for each yj, but

also measurement errors x j for each x j.  Most physicists treat the problem as if all the xj = 0 using the standard least squares

method. Such a procedure loses accuracy in the determination of the unknown parameters contained in the function y = f (x) and
it gives estimates of errors which are smaller than the true errors. 

The standard least squares method of Section 15 should be used only when all the xj  << y i. Otherwise one must replace the

weighting factors 1 / i
2 in Eq. (24) with ( j)

-2 where 

 
(36) 

Eq. (24) then becomes 

 
(37) 

A proof is given in Ref. 7. 

We see that the standard least squares computer programs may still be used. In the case where y = 1 + 2x one may use what

are called linear regression programs, and where y is a polynomial in x one may use multiple polynomial regression programs.
The usual procedure is to guess starting values for ðf / ð x and then solve for the parameters j* using Eq. (30) with j replaced

by j. Then new [ðf / ð x]j can be evaluated and the procedure repeated. Usually only two iterations are necessary. The effective

variance  method  is  exact  in  the  limit  that  ð f  /  ð  x  is  constant  over  the  region  x j .  This  means  it  is  always  exact  for  linear

regressions. 

   

APPENDIX IV. NUMERICAL METHODS FOR MAXIMUM LIKELIHOOD AND LEAST
SQUARES SOLUTIONS

In many cases the likelihood function is not analytical or else, if analytical, the procedure for finding the j* and the errors is too

cumbersome and time consuming compared to numerical methods using modern computers. 

For  reasons  of  clarity  we  shall  first  discuss  an  inefficient,  cumbersome  method  called  the  grid  method.  After  such  an
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introduction we shall be equipped to go on to a more efficient and practical method called the method of steepest descent. 

The grid method 

If  there  are  M  parameters  1 ,  ...  ,  M  to  be  determined  one  could  in  principle  map  out  a  fine  grid  in  M-dimensional space

evaluating w( ) (or S( )) at each point. The maximum value obtained for w is the maximum likelihood solution w*. One could
then map out contour surfaces of w = (w* - ½), (w* - 1), etc. This is illustrated for M = 2 in Fig. 6. 

Figure  6.  Contours  of  fixed  w  enclosing  the  max.
likelihood solution w*. 

In the case of good statistics the contours would be small ellipsoids. Fig. 7 illustrates a case of poor statistics. 

Figure 7. A poor statistics case of Fig. 6. 

Here it is better to present the (w* - ½) contour surface (or the (S* + 1) surface) than to try to quote errors on . If one is to
quote errors it should be in the form 1

- < 1 < 1
+ where 1

- and 1
+ are the extreme excursions the surface makes in 1 (see

Fig. 7). It could be a serious mistake to quote a- or a+ as the errors in 1. 

In the case of good statistics the second derivatives ð2w / ð a ð b = - Hab could be found numerically in the region near w*. The

errors in the 's are then found by inverting the H-matrix to obtain the error matrix for ; i.e.,  = (H-1)ij.

The second derivatives can be found numerically by using 
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In the case of least squares use Hij = ½ ðS / ð i ð j . 

So far we have for the sake of simplicity talked in terms of evaluating w( ) over a fine grid in M-dimensional space. In most
cases  this  would  be  much  too  time  consuming.  A  rather  extensive  methodology  has  been  developed  for  finding  maxima  or
minima numerically.  In this appendix we shall outline just one such approach called the method of steepest descent. We shall
show how to find the least squares minimum of S( ). (This is the same as finding a maximum in w( )). 

Method of Steepest Descent 

At first thought one might be tempted to vary 1 (keeping the other 's fixed) until a minimum is found. Then vary 2 (keeping

the others fixed) until a mew minimum is found, and so on. This is illustrated in Fig. 8 where M = 2 and the errors are strongly
correlated.  But  in Fig.  8  many trials  are  needed.  This stepwise procedure does converge, but  in the case of Fig.  8,  much too
slowly. In the method of steepest descent one moves against the gradient in -space: 

 

Figure  8.  Contours  of  constant  S  vs.  1  and  2 .

Stepwise search for the minimum. 

So we change all the 's simultaneously in the ratio ðS / ð 1 : ðS / ð 2 : ðS / ð 3 : ... . In order to find the minimum along this

line  in  -space  one  should  use  an  efficient  step  size.  An  effective  method  is  to  assume  S ( s )  varies  quadratically  from the
minimum position s* where s is the distance along this line. Then the step size to the minimum is 

 

where S1, S2, and S3 are equally spaced evaluations of S(s) along s with step size s starting from s1; i.e., s2 = s1 + s, s3 = s1 +

2 s .  One  or  two  iterations  using the  above formula  will  reach the minimum along s shown as  point  (2)  in Fig.  9 .  The next
repetition of the above procedure takes us to point (3) in Fig. 9. It is clear by comparing Fig. 9 with Fig. 8 that the method of
steepest descent requires much fewer computer evaluations of S( ) than does the one variable at a time method. 
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Figure  9.  Same  as  Fig.  8 ,  but  using  the  method  of
steepest descent. 

Least Squares with Constraints 

In some problems the possible values of the j are restricted by subsidiary constraint relations. For example, consider an elastic

scattering  event  in  a  bubble  chamber  where  the  measurements  y j  are  track  coordinates  and  the  i  are  track  directions  and

momenta. However,  the combinations of i that are physically possible are restricted by energy-momentum conservation. The

most  common way of handling this  situation is  to  use the 4 constraint  equations to  eliminate 4  of the 's in S ( ).  Then S  is
minimized with respect to the remaining 's. In this example there would be (9 - 4) = 5 independent 's: two for orientation of
the  scattering  plane,  one  for  direction  of  incoming  track  in  this  plane,  one  for  momentum  of  incoming  track,  and  one  for
scattering angle.  There could also  be constraint  relations among the measurable  quantities y i .  In either  case, if  the method of

substitution is too cumbersome, one can use the method of Lagrange multipliers. 

In some cases the constraining relations are inequalities rather than equations. For example, suppose it is known that 1 must be

a positive quantity. Then one could define a new set of 's where ( 1')2 = 1,  2 ' = 2,  etc. Now if S( ') is minimized no

non-physical values of a will be used in the search for the minimum. 

Appendix V. Cumulative Gaussian and Chi-Squared Distributions

The 2 confidence limit is the probability of Chi-squared exceeding the observed value; i.e., 

 

where Pp for p degrees of freedom is given by Eq. (30a). 

Gaussian Confidence Limits 

Let 2 = [x / ]2. Then for nD = 1, 

 

Thus CL for nD is twice the area under a single Gaussian tail. For example the nD = 1 curve for 2 = 4 has a value of CL =

0.046. This means that the probability of getting | x|  2  is 4.6% for a Gaussian distribution. 
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Figure 10. 2 Confidence Level vs. 2 for nD Degrees

of Freedom (9). 
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