-A. Bodek - Feb 9. 2004 updated, 2002
-This same WWW area has PDF file copies of most of the references used.

Initial quark mass m, and final mass,$m_{F}=m$ * bound in a proton of mass M -- Summary: INCLUDE quark initial Pt) Get \square scaling (not $\mathbf{x =} \mathbf{Q}^{\mathbf{2} / 2 M} \square$)
पIs the correct variable which is Invariant in any frame : $q 3$ and P in opposite directions.

$$
\square=\frac{Q^{2}+m_{F}^{2}}{M\left\lfloor 1+\sqrt{\left.\left(1+Q^{2} / \square^{2}\right)\right]}\right.} \quad \text { for } m_{I}^{2}, P t=0
$$

$$
\begin{aligned}
& P I, P 0 \quad q 3, q 0
\end{aligned}
$$

$$
\begin{aligned}
& \left(q+P_{I}\right)^{2}=P_{F}^{2} \quad \square q^{2}+2 P_{I} \cdot q+P_{I}^{2}=m_{F}^{2}
\end{aligned}
$$

Special cases:

Numerator $m_{F}{ }^{2}$: Slow Rescaling as in charm production

Denominator: Target mass effect, e.g. Nachtman Variable〕, Light Cone Variable 〕, Georgi Politzer Target Mass \square

Most General Case:

$$
\square_{w}^{\prime}=\quad\left[Q^{\prime 2}+B\right] /\left[M \square\left(1+\left(1+Q^{2} / \square^{2}\right)\right)^{1 / 2}+A\right]
$$

where $2 Q^{\prime 2}=\left[Q^{2}+m_{F}{ }^{2}-m_{1}{ }^{2}\right]+\left[\left(Q^{2}+m_{F}{ }^{2}-m_{I^{2}}{ }^{2}\right)^{2}+4 Q^{2}\left(m_{1}{ }^{2}+P^{2} t\right)\right]^{1 / 2}$
For the case of Pt2=0 see R. Barbieri et al Phys. Lett. 64B, 1717 (1976) and Nucl. Phys. B117, 50 (1976)
Add B and A to account for effects of additional $\square \mathrm{m}^{2}$ from NLO and NNLO (up to infinite order) QCD effects.

Initial quark mass $m_{\text {, }}$ and final mass,$m_{F}=m^{*}$ bound in a proton of mass M -- Page 1 INCLUDE quark initial Pt) Get $\bar{\square}$ scaling (not $\mathbf{x}=\mathbf{Q}^{2 / 2 M} \square$) DETAILS
पIs the correct variable which is Invariant in any frame : $q 3$ and P in opposite directions.

$$
P I, P 0 \quad q 3, q 0
$$

$\square=\frac{P_{I}^{0}+P_{I}^{3}}{P_{P}^{0}+P_{P}^{3}} \quad$ quark
In $\square L A B \square$ Frame : $\square \quad P_{P}^{0}=M, P_{P}^{3}=0$
$\square=\frac{P_{I \square L A B}^{0}+P_{I \square L A B}^{3}}{M} \square P_{I \square L A B}^{0}+P_{I \square L A B}^{3}=\square M$
$\square=\frac{\left(P_{I}^{0}+P_{I}^{3}\right)\left(P_{I}^{0} \square P_{I}^{3}\right)}{M\left(P_{I}^{0} \square P_{I}^{3}\right)}=\frac{\left(P_{I}^{0}\right)^{2} \square\left(P_{I}^{3}\right)^{2}}{M\left(P_{I}^{0} \square P_{I}^{3}\right)}$
$\square M\left(P_{I}^{0} \square P_{I}^{3}\right)=\left(m_{I}^{2}+P t^{2}\right)$
$\square P_{I}^{0} \square P_{I}^{3}=\left(m_{I}^{2}+P t^{2}\right) /(\square M)$
(1) : $P_{I}^{0} \square P_{I}^{3}=\left(m_{I}^{2}+P t^{2}\right) /([M)$
(2) : $P_{I}^{0}+P_{I}^{3}=\square M$

$$
\begin{aligned}
& \square \underset{\mathrm{P}=\mathrm{P}_{\mathrm{F}}=\mathrm{P}_{1}^{0}, \mathrm{P}_{3}^{3}, \mathrm{~m}_{1}}{ } \\
& \left(q+P_{I}\right)^{2}=P_{F}^{2^{\mathrm{P}=\mathrm{P}^{0}+\mathrm{P}^{3}, \mathrm{M}} \quad \square q^{2}+2 P_{I}^{\cdot} \overline{q+P_{I}^{2}=m_{F}^{2}}} \\
& 2\left(P_{I}^{0} q^{0}+P_{I}^{3} q^{3}\right)=Q^{2}+m_{F}^{2} \square m_{I}^{2} \quad Q^{2}=\square q^{2}=\left(q^{3}\right)^{2} \square\left(q^{0}\right)^{2} \\
& \text { In } \square \text { LAB } \square \text { Frame: } \square \\
& Q^{2}=\square q^{2}=\left(q^{3}\right)^{2} \square \square^{2} \\
& {\left[\left[M+\left(m_{I}^{2}+P t^{2}\right) /([M)] \square+\left[\square M \square\left(m_{I}^{2}+P t^{2}\right) /([M)] q^{3}\right.\right.\right.} \\
& =Q^{2}+m_{F}^{2} \square m_{I}^{2} \text { : General } \\
& \begin{array}{l}
\text { Set: } m_{I}^{2}, P t=0 \quad \text { (for now) } \\
{\left[M \square+\square M q^{3}=Q^{2}+m_{F}^{2}\right.}
\end{array} \\
& \square=\frac{Q^{2}+m_{F}^{2}}{M\left(\square+q^{3}\right)}=\frac{Q^{2}+m_{F}^{2}}{M \square\left(1+q^{3} / \square\right)} \quad \text { for } m_{I}^{2}, P t=0 \\
& \begin{array}{l}
\square=\frac{Q^{2}+m_{F}^{2}}{M \square 1+\sqrt{\left.\left(1+Q^{2} / \square^{2}\right)\right]}} \quad \text { for } m_{I}^{2}, P t=0 \\
\text { Special cases : Denom } \square \text { TM term, Num } \square \text { Slow rescaling }
\end{array}
\end{aligned}
$$

initial quark mass $m_{\text {, }}$ and final mass $m_{F}=m^{*}$ bound in a proton of mass M -- Page 2 INCLUDE quark initial Pt) DETAILS

Keep all terms here and: multiply by $\square \mathbf{M}$ and group terms in \square qnd \square^{2}
$\square^{2} M^{2}(\square+q 3)-\square M\left[Q^{2}+m_{F}{ }^{2}-m_{I^{2}}{ }^{2}\right]+\left[m_{I^{2}}{ }^{2}+P t^{2}(\square q 3)^{2}\right]=0 \quad$ General Equation a
b
=> solution of quadratic equation $\square=\left[-b+\left(b^{2}-4 a c\right)^{1 / 2}\right] / 2 a$
use $\left(\square^{2} \square q 3^{2}\right)=q^{2}=-Q^{2}$ and $(\square+q 3)=\square+\square\left[1+Q^{2} / \square^{2}\right]^{1 / 2}=\square+\square\left[1+4 M^{2} x^{2} / Q^{2}\right]^{1 / 2}$
$\square^{\prime}{ }_{w}=\quad\left[Q^{\prime 2}+B\right] /\left[M \square\left(1+\left(1+Q^{2} / \square^{2}\right)\right)^{1 / 2}+A\right]$
where $2 Q^{\prime 2}=\left[Q^{2}+m_{F}{ }^{2}-m_{1}{ }^{2}\right]+\left[\left(Q^{2}+m_{F}{ }^{2}-m_{1}{ }^{2}\right)^{2}+4 Q^{2}\left(m_{1}{ }^{2}+P^{2} t\right)\right]^{1 / 2}$
Add B and A to account for effects of additional $\square \mathrm{m}^{2}$ from NLO and NNLO effects.
or
$2 Q^{\prime 2}=\left[Q^{2}+m_{F}{ }^{2}-m_{1}{ }^{2}\right]+\left[Q^{4}+2 Q^{2}\left(m_{F}{ }^{2}+m_{1}{ }^{2}+2 P^{2 t}\right)+\left(m_{F}{ }^{2}-m_{I^{2}}{ }^{2}\right)^{2}\right]^{1 / 2}$
$\mathrm{C}_{\mathrm{w}}=\left[\mathrm{Q}^{\prime 2}+\mathrm{B}\right] /\left[\mathrm{M}\left[\left(1+\left[1+4 \mathrm{M}^{2} \mathrm{x}^{2} / \mathrm{Q}^{2}\right]^{1 / 2}\right)+\mathrm{A}\right]\right.$ (equivalent form)
$\mathrm{C}_{\mathrm{w}}=\mathrm{x}\left[2 \mathrm{Q}^{\prime 2}+2 B\right] /\left[\mathrm{Q}^{2}+\left(\mathrm{Q}^{4}+4 \mathrm{x}^{2} \mathrm{M}^{2} \mathrm{Q}^{2}\right)^{1 / 2}+2 A x\right]$ (equivalent form)

Very low Q2: Revenge of the Spectator Quarks F2 (elastic) versus Q2 (GeV2)

$$
\begin{equation*}
\nu W_{2 \phi}\left(q^{2}, \nu\right)=\left[1-W_{2}^{\mathrm{el}}\left(q^{2}\right)\right] F_{2 \phi}\left(\omega^{\prime}\right), \tag{13}
\end{equation*}
$$

where $F_{2 p}\left(\omega^{\prime}\right)$ is the scaling limit structure function and

$$
\begin{equation*}
W_{2}^{\text {el }}\left(q^{2}\right)=\frac{G_{E}^{2}\left(q^{2}\right)+\tau G_{\mu}^{2}\left(q^{2}\right)}{1+\tau}, \quad \tau=\frac{q^{2}}{4 M^{2}} \tag{14}
\end{equation*}
$$

is the counterpart of W_{2} for elastic scattering (see Appendix B), where G_{E} and G_{μ} are, respectively, the elastic electric and magnetic form factors for the proton. This form satisfies the constraint that W_{2} vanish at $q^{2}=0$. Integrating $W_{2 p}$ over all values of ν yields

$$
\begin{equation*}
\int_{\text {inelastic }} d \nu W_{2 p}\left(q^{2}, \nu\right)=\left[1-W_{2}^{\text {el }}\left(q^{2}\right)\right] \int_{\text {inelastic }} \frac{d \nu}{\nu} F_{2 p}\left(\omega^{\prime}\right) \tag{15}
\end{equation*}
$$

But this is the Gottfried sum rule ${ }^{27}$ for the proton, where

$$
\begin{equation*}
\int_{\text {inclastic }} \frac{d \nu}{\nu} F_{2 p}\left(\omega^{\prime}\right)=\sum_{i} q_{i}{ }^{2} \tag{16}
\end{equation*}
$$

is the sum of the parton charges squared.

2. Application

We can now apply these results to the proton and neutron if we consider them as being made of constituents. These yield immediately

$$
\begin{align*}
\int_{\text {inel }} d \nu W_{2 p}\left(q^{2}, \nu\right)= & \left(\sum_{i=1}^{N} e_{i}^{2}\right)_{p}\left[1-\left|F_{e 1}^{P}\left(q^{2}\right)\right|^{2}\right] \\
& +C_{p}\left(q^{2}\right)\left(\sum_{i \neq j}^{N} \sum_{i} e_{i} e_{j}\right)_{p}, \tag{B15}
\end{align*}
$$

$$
\begin{align*}
\int_{\text {tnel }} d \nu W_{2 n}\left(q^{2}, \nu\right)= & \left(\sum_{i=1}^{N} e_{i}^{2}\right)_{n}\left[1-\left|F_{i 1}^{N}\left(q^{2}\right)\right|^{2}\right] \\
& +C_{n}\left(q^{2}\right)\left(\sum_{i \neq j}^{N} \sum_{i} e_{j}\right)_{n} . \tag{B16}
\end{align*}
$$

F_{01}^{b} and F_{01}^{n} would be equal if the momentum distributions of the constituents were the same in the proton and neutron, so if the correlation terms were negligible, one might expect $W_{2 n} / W_{2 p}$ to scale to lower values of q^{2} than either $W_{2 \phi}$ or $W_{2 n}$ alone. Gottfried noted that in the simple quark model the charge sum in the correlation contribution vanishes for the proton, but not for the neutron. ${ }^{27}$
For the case of particles with spin, magnetic moments, and more realistic ground states, the results get much more complicated. There are several more detailed accounts in the case of nuclear scattering in the literature. ${ }^{41}$ However, the ${ }^{1}$ simple approach stated here agrees with the spirit of the more complex analyses.

Stein etal PRD 12, 1884 (1975)-2
${ }^{41}$ For more detailed treatment of closure, see, for example O. Kofoed-Hanson and C. Wilkin, Ann. Phys. (N. Y.) 63, 309 (1971); K. W. McVoy and L. Van Hove, Phys. Rev. 125, 1034 (1962).

$$
\begin{align*}
& G_{e 1}\left(q^{2}\right)=\left|\sum_{i=1}^{n} e_{i}\right|^{2}\left|F_{\mathrm{e} 1}\left(q^{2}\right)\right|^{2} \tag{B14}\\
& G_{\text {ine1 }}\left(q^{2}\right)= \sum_{i=1}^{N} e_{i}^{2}\left[1-\left|F_{e 1}\left(q^{2}\right)\right|^{2}\right] \\
&+C\left(q^{2}\right) \sum_{i \neq j}^{N} \sum_{i} e_{i} e_{j} \\
& \nu W_{2 p}\left(q^{2}, \nu\right)=\left[1-W_{2}^{\mathrm{et}}\left(q^{2}\right)\right] F_{2 p}\left(\omega^{\prime}\right)
\end{align*}
$$

${ }^{27}$ K. Gottfried, Phys. Rev. Lett. 18, 1174 (1967).

$$
\begin{aligned}
& \text { Note: at low } \mathrm{Q}^{2} \\
& {\left[1-\mathrm{W}_{2}^{\mathrm{e}} \mathrm{l}\right]=1-1 /\left(1+\mathrm{Q}^{2} / 0.71\right)^{4}} \\
& =1-\left(1-4 \mathrm{Q}^{2} / 0.71\right)= \\
& =1-\left(1-\mathrm{Q}^{2} / 0.178\right)= \\
& ->\mathrm{Q}^{2} / 0.178 \text { as } \mathrm{Q}^{2}->0
\end{aligned}
$$

where $F_{z p}\left(\omega^{\prime}\right)$ is the scaling limit structure function and

$$
\begin{align*}
& W_{2}^{e}\left(q^{2}\right)=\frac{G_{E}^{2}\left(q^{2}\right)+\tau G_{N}^{2}\left(q^{2}\right)}{1+\tau}, \quad \tau=\frac{q^{2}}{4 M^{2}} \tag{14}\\
& G_{E f}=P\left(q^{2}\right) /\left(1+q^{2} / 0.71\right)^{2}
\end{align*}
$$

Versus Our GRV98 fit with

$$
\begin{aligned}
& \mathrm{Q}^{2} /\left(\mathrm{Q}^{2}+\mathrm{C}\right)->\mathrm{Q}^{2} / \mathrm{C} \\
& \mathrm{c}=0.1797+-0.0036
\end{aligned}
$$

P is close to 1 and gives deviations
Arie Bodek, Univ. of Rochester
From Dipole form factor (5\%)

rules C. H. Llewellyn Smith hep-ph/981230

Talk given at the Sid Drell Symposium

SLAC, Stanford, California, July 31st, 1998
Gotttried noted that in the 'breathtakingly crude' naive three-quark model the second term in the following equation vanishes for the proton (it also vanishes for the neutron, but neutrons are not mentioned):

$$
\begin{equation*}
\sum_{i, j} Q_{i} Q_{j} \equiv \sum_{i} Q_{i}^{2}+\sum_{i \neq j} Q_{i} Q_{j} \tag{5}
\end{equation*}
$$

Thus for any charge-weighted, flavour-independent, one-body operator all correlations vanish, and therefore using the closure approximation the following sum rule can be derived:

$$
\begin{equation*}
\int_{\nu 0} W_{2}^{e p}\left(\nu, q^{2}\right) d \nu=1-\frac{G_{E}^{2}-q^{2} G_{M}^{2} / 4 m^{2}}{1-q^{2} / 4 m^{2}} \tag{6}
\end{equation*}
$$

where ν_{0} is the inelastic threshold (the methods used to derive this sum rule are those that have long been used to derive sum rules in atomic and nuclear physics, for example the sum rule [13] derived in 1955 by Drell and Schwarz). After observing that this sum

Revenge of the Spectator Quarks -4 - History of Inelastic Sum
 rules C. H. Llewellyn Smith hep-ph/981230

rule appears to be oversaturated in photoproduction (we now know that the integral is actually infinite in the deep inelastic region), Gottfried asked whether it was 'idiotic', and stated that if, on the contrary there is some truth in it, one would want a 'derivation that a well-educated person could believe'.

In his talk at the 1967 SLAC conference Bj quoted Gottfried's paper and stated that diffractive contributions should presumably be excluded from the integral, which could be done by taking the difference between protons and neutrons, leading to the following result, in modern notation:

$$
\begin{equation*}
\int\left(F_{2}^{e p}\left(x, q^{2}\right)-F_{2}^{e n}\left(x, q^{2}\right)\right) \frac{d x}{x}=\frac{1}{3} . \tag{7}
\end{equation*}
$$

This result, which is generally known as the Gottfried sum rule, is not respected by the data which give the value [14] 0.235 ± 0.026. In parton notation, the left-hand side can be written

$$
\begin{equation*}
\frac{1}{3}\left(n_{u}+n_{\bar{u}}-n_{d}-n_{\bar{d}}\right)=\frac{1}{3}+\frac{2}{3}\left(n_{\bar{u}}-n_{\bar{d}}\right), \tag{8}
\end{equation*}
$$

Strangeness-Conserving Case

The kinematic analysis of Sec. 3 shows that we may write the reaction differential cross section in the form

$$
\begin{align*}
& d^{2} \sigma\left(\binom{\nu}{\bar{\nu}}+p \rightarrow\binom{l}{\bar{l}}+\beta(S=0)\right) / d \Omega_{l} d E_{l}=\frac{G^{2} \cos ^{2} \theta_{c}}{(2 \pi)^{2}} \frac{E_{l}}{E_{\nu}} \\
& \times\left[q^{2} \alpha^{(\pm)}\left(q^{2}, W\right)+2 E_{v} E_{l} \cos ^{2}\left(\frac{1}{2} \phi\right) \beta^{(\pm)}\left(q^{2}, W\right) \mp\left(E_{v}+E_{l}\right) q^{2} \gamma^{(\pm)}\left(q^{2}, W\right)\right] . \tag{13}
\end{align*}
$$

By measuring $d^{2} \sigma / d \Omega_{l} d E_{l}$ for various values of the neutrino energy E_{v}, the lepton energy E_{l}, and the leptonneutrino angle ϕ, we can determine the form factors $\alpha^{(\pm)}, \beta^{(\pm)}$, and $\gamma^{(\pm)}$for all $q^{2}>0$ and for all W above threshold.

In Sec. 4 we prove that:
(i) the local commutation relations of Eq. (1a) and Eq. (1c) imply

$$
\begin{equation*}
2=g_{A}\left(q^{2}\right)^{2}+F_{1}^{V}\left(q^{2}\right)^{2}+q^{2} F_{2}^{V}\left(q^{2}\right)^{2}+\int_{M_{N+} M_{*}}^{\infty} \frac{W}{M_{N}} d W\left[\beta^{(-)}\left(q^{2}, W\right)-\beta^{(+)}\left(q^{2}, W\right)\right] ; \tag{14}
\end{equation*}
$$

Strangeness-Changing Case

$$
\begin{equation*}
(4,2)=\int \frac{W}{M_{N}} d W\left[\beta_{(p, n)}^{(-)}\left(q^{2}, W\right)-\beta_{(p, n)}{ }^{(+)}\left(q^{2}, W\right)\right] ; \tag{18}
\end{equation*}
$$

The integrals of Eqs. (18)-(20) have discrete contributions at $W=M_{\Delta}$ and/or M_{Σ} and a continuum extending from $W=M_{\Delta}+M_{\pi}$ or from $W=M_{\Sigma}+M_{\pi}$ to $W=\infty$. We have not explicitly separated off the discrete contributions to the integrals, as was done in Eqs. (14)-(16) for the strangeness-conserving case. It would, of course, be straightforward to do this.

The sum rule on $\beta^{(\pm)}$of Eq. (14) is obtained by adding together two separately derived sum rules on the axialvector and the vector parts of $\beta^{(\pm)}, \beta_{A}^{(\pm)}$, and $\beta_{V}^{(\pm)}$;

$$
\begin{align*}
& 1=g_{A}\left(q^{2}\right)^{2}+\int_{M_{N}+M_{x}}^{m} \frac{W}{M_{N}} d W \\
& \times\left[\beta_{\boldsymbol{\Lambda}}{ }^{(-)}\left(q^{2}, W\right)-\beta_{\boldsymbol{\Lambda}}^{(+)}\left(q^{2}, W\right)\right], \tag{53a}\\
& 1=F_{1}^{V}\left(q^{2}\right)^{2}+q^{2} F_{y^{2}}^{V}\left(q^{y}\right)^{2}+\int_{M_{x}+U_{\mathrm{r}}}^{m} \frac{W}{M_{M}} d W \\
& X\left[\beta_{V^{(-)}}\left(q^{2}, W\right)-\beta_{V}^{(+)}\left(q^{2}, W\right)\right] . \tag{5ib}
\end{align*}
$$

In terms of the structure functions defined in Eq. (41),

$$
\begin{align*}
& \beta_{d}^{(\pm)}\left(q^{2}, W\right)=\left[q^{4} A 1_{1}^{(\pm)}\left(q^{2}, W\right)+\left(q^{2}\right)^{2} A_{2}^{(\pm)}\left(q^{2}, W\right)\right. \\
& \left.+q^{4} I^{(\pm)}\left(q^{3}, W\right)+D_{d}^{(\pm)}\left(q^{2}, W\right)\right] \\
& \mathrm{X} 4 M_{N}^{2} /\left(W^{2}-M_{N^{2}}{ }^{2}+q^{2}\right)^{2}, \tag{54}\\
& \beta_{7}^{(\pm)}\left(q_{3}^{3}, W\right)=q^{2}\left[V_{1}^{(\pm)}\left(q_{2}^{2}, W\right)+q^{2} V v_{8}^{(\pm)}\left(q^{2}, W\right)\right] \\
& X 4 M_{N}{ }^{2} /\left(W^{2}=M_{N}{ }^{2}+q^{2}\right)^{2} \text {. }
\end{align*}
$$

[The structure functions $I_{V}^{(\pm \pm}\left(q^{2}, W\right)$ and $D_{r}^{(\pm)}\left(q^{4} ; W\right)$ vanish identically in the strangeness conserving case, because of conservation of the vector current.] Since the derivations of Eqs, (53a) and (53b) are identical, we will treat explicitly only the axial vector case, Eq. (53a).

(C) Sum Rule for ${ }^{(\pm)}$

The sum rule on ${ }^{(4)}$ of Eq. (5) is obtained by adding together the two idenitites

Here $\alpha_{A}^{(\pm)}$and ${ }^{(\pm)}{ }^{(\pm)}$are , reppectively, the axial vector and the vector parts of $\alpha^{(t)}$,

$$
\begin{equation*}
a_{1}^{(\pm)}=A_{1}^{(\pm)}\left(q_{1}^{2}, W\right), u p^{(4)}=V_{1}^{(\pm)}\left(q_{2}^{d} W\right) . \tag{74}
\end{equation*}
$$

$$
\xi v\left(q^{2}\right)=F_{1}^{F}\left(q^{2}\right)+2 M N F_{2}{ }^{V}\left(q^{2}\right)
$$

$$
\begin{equation*}
C_{l}=\int d q_{0}\left(A_{1}^{(-)}-A_{1}^{(+)}\right)=\int \frac{W}{M_{N}} d W\left[A_{1}^{(-)}\left(q^{2}, W\right)-A_{1}^{(4)}\left(q^{2}, W\right)\right], \tag{82}
\end{equation*}
$$

http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-0958b.pdf

(5) Isotriplet current

$$
\begin{aligned}
\mathrm{F}_{\mathrm{V}}^{1}\left(\mathrm{q}^{2}\right)=\left[\mathrm{F}_{1}^{\mathrm{p}}\left(\mathrm{q}^{2}\right)-\mathrm{F}_{1}^{\mathrm{n}}\left(\mathrm{q}^{2}\right)\right]= & \text { Dirac electromagnetic isovector } \\
& \text { form factor. }
\end{aligned}
$$

$\xi=\mu_{\mathrm{p}}-\mu_{\mathrm{n}}=3.71 \quad(\mu=$ anomalous magnetic moment $)$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{V}}^{2}\left(\mathrm{q}^{2}\right)=\frac{\mu_{\mathrm{p}}^{-} \mathrm{F}_{2}^{\mathrm{p}}\left(\mathrm{q}^{2}\right)-\mu_{\mathrm{n}} \mathrm{~F}_{2}^{\mathrm{n}}\left(\mathrm{q}^{2}\right)}{\mu_{\mathrm{p}}^{-\mu_{\mathrm{n}}}}= \text { Pauli electromagnetic } \\
& \text { isovector form factor. }
\end{aligned}
$$

In terms of the Sachs form factors

$$
\begin{aligned}
& F_{V}^{1}\left(q^{2}\right)=\left(1-\frac{q^{2}}{4 M^{2}}\right)^{-1}\left[G_{E}^{V}\left(q^{2}\right)-\frac{q^{2}}{4 M^{2}} G_{M}^{V}\left(q^{2}\right)\right] \\
& \xi F_{V}^{2}\left(q^{2}\right)=\left(1-\frac{q^{2}}{4 M^{2}}\right)^{-1}\left[G_{M}^{V}\left(q^{2}\right)-G_{E}^{V}\left(q^{2}\right)\right]
\end{aligned}
$$

Experimentally, the G's are described to within $\pm 10 \%$ by:

$$
\begin{aligned}
& { }_{\mathrm{G}}^{\mathrm{E}} \mathrm{~V}\left(\mathrm{q}^{2}\right)=\frac{1}{\left(1-\frac{\mathrm{q}^{2}}{0.71 \mathrm{GeV}^{2}}\right)^{2}} \\
& { }_{\mathrm{G}}^{\mathrm{M}} \\
& \mathrm{~V}\left(\mathrm{q}^{2}\right)=\frac{1+\mu_{\mathrm{p}}-\mu_{\mathrm{n}}}{\left(1-\frac{\mathrm{q}^{2}}{0.71 \mathrm{GeV}^{2}}\right)^{2}}
\end{aligned}
$$

Note that LS define q2 as negative while Gillman and Adler it is positive. So all the -q2 here should be written as + Q2, while for Alder and Gillman $\mathrm{q} 2=+\mathrm{Q} 2$. Also, in modern notation Fa is -1.26 and for $\mathrm{n}=2$, $\mathrm{Ma}=1.0 \mathrm{GeV} 2$. We define GE (vector)= Gep-Gen We need to put in non zero Gen
(3.17)

$$
\begin{equation*}
F_{A}\left(q^{2}\right)=-1.23 /\left(1-\frac{q^{2}}{M_{A}^{2}}\right)^{n} \tag{3.24}
\end{equation*}
$$

http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-0958b.pdf

(5) Isotriplet current

$$
\begin{array}{ll}
\text { otriplet eurrent } & \text { Using these equations on the left we get: } \\
\mathrm{F}_{\mathrm{V}}^{1}\left(\mathrm{q}^{2}\right)=\left[\mathrm{F}_{1}^{\mathrm{p}}\left(\mathrm{q}^{2}\right)-\mathrm{F}_{1}^{\mathrm{n}}\left(\mathrm{q}^{2}\right)\right]=\text { Dirac electromagnetic isovector } \\
& \begin{array}{l}
\mathrm{F} 1 \mathrm{~V}=\mathrm{GD}\left[1-\mathrm{GenF}+4.71^{*} \mathrm{Q} 2 /(4 \mathrm{M} 2)\right] /[1+\mathrm{Q} 2 /(4 \mathrm{M} 2)] \\
\xi=\mu_{\mathrm{p}}-\mu_{\mathrm{n}}=3.71(\mu=\text { anomalous magnetic moment })
\end{array} \\
\text { form factor. } & \mathrm{F} 2 \mathrm{~V}=(1 / 3.71) \mathrm{GD}[4.71-1+\mathrm{GenF}] /[1+\mathrm{Q} 2 / 4 \mathrm{M} 2]
\end{array}
$$ $\mathrm{F}_{\mathrm{V}}^{2}\left(\mathrm{q}^{2}\right)=\frac{\mu_{\mathrm{p}} \cdot \mathrm{F}_{2}^{\mathrm{p}}\left(\mathrm{q}^{2}\right)-\mu_{\mathrm{n}} \mathrm{F}_{2}^{\mathrm{n}}\left(\mathrm{q}^{2}\right)}{\mu_{\mathrm{p}}-\mu_{\mathrm{n}}}=$ Pauli electromagnetic isovector form factor.

In terms of the Sachs form factors

$$
\begin{aligned}
& F_{V}^{1}\left(q^{2}\right)=\left(1-\frac{q^{2}}{4 M^{2}}\right)^{-1}\left[G_{E}^{V}\left(q^{2}\right)-\frac{q^{2}}{4 M^{2}} G_{M}^{V}\left(q^{2}\right)\right] \\
& \xi F_{V}^{2}\left(q^{2}\right)=\left(1-\frac{q^{2}}{4 M^{2}}\right)^{-1}\left[G_{M}^{V}\left(q^{2}\right)-G_{E}^{V}\left(q^{2}\right)\right]
\end{aligned}
$$

Experimentally, the G's are described to within $\pm 10 \%$ by:

$$
\begin{aligned}
& { }_{\mathrm{G}}^{\mathrm{E}} \\
& \mathrm{~V} \\
& \left(\mathrm{q}^{2}\right)=\frac{1}{\left(1-\frac{\mathrm{q}^{2}}{0.71 \mathrm{GeV}^{2}}\right)^{2}} \\
& { }_{\mathrm{G}}^{\mathrm{M}} \mathrm{~V}\left(\mathrm{q}^{2}\right)=\frac{1+\mu_{\mathrm{p}}-\mu_{\mathrm{n}}}{\left(1-\frac{\mathrm{q}^{2}}{0.71 \mathrm{GeV}^{2}}\right)^{2}}
\end{aligned}
$$

Equation 14 in Adler's paper is in a different
notation so we need to use equation 19 in Gillman
(see next page)
$\mathrm{SV}=\left[\mathrm{F} 1 \mathrm{v}^{* *} 2+\mathrm{Tau}^{*} 3.71^{* *} 2^{*} \mathrm{~F} 2 \mathrm{v}^{* *} 2\right]$
And (1-SV) is the vector suppression
(${ }^{(318} 1^{18}-\mathrm{Fa}^{* *} 2$) is the axial suppression
See next page for GenF
Need to devide by integral from Xsithreshold To 1.0 of (Dv-Uv). Where Xsi threshold
Is the Xsi for pion threshold

$$
F_{A}\left(q^{2}\right)=-1.23 /\left(1-\frac{q^{2}}{M_{A}^{2}}\right)^{n}
$$

F2 Adler includes Gen term (from equation 13 in hep-ph/0202183 Krutov
(extraction of the neutron charge form factor, Feb. 2002).
$\mathrm{MuN}=-1.913$
$\mathrm{GD}=1 /(1+\mathrm{Q} 2 / 0.71)^{* *} 2$
$\mathrm{Tau}=\mathrm{Q} 2 /\left(4 * \mathrm{Mp}^{* *} 2\right)$
$\mathrm{a}=0.942$ and $\mathrm{b}=4.62$
$\mathrm{Gen}=\mathrm{GenF} * \mathrm{GD} \quad(\mathrm{GenF}$ is the factor that multiplies GD to get Gen)

GenF $=-\mathrm{MuN} * \mathrm{a}$ * tau/ ($1+\mathrm{b}^{*}$ tau), So Gen is positive

The vector current part of the original sum rule of Adler for neutrino scattering can be written

$$
\begin{equation*}
\int_{0}^{\infty} d q_{0}\left[\beta^{(-)}\left(q_{0}, q^{2}\right)-\beta^{(+)}\left(q_{0} q^{2}\right)\right]=1 \tag{18}
\end{equation*}
$$

The functions $\beta^{(\pm)}\left(q_{0}, q^{2}\right)$ are defined just as in Eq. (7) except that in place of the electromagnetic currents $J_{\mu}(0)$ and $J_{\mu}(0)$ we have put the isospin raising or
lowering F-spin currents $\Im_{(1 \pm i 2) \mu}(0)$ [recall that $\Im_{s_{\mu}}(0)$ is just the isovector part of the electromagnetic current]. If we explicitly separate out the nucleon Born term in Eq. (18), we have

$$
\begin{align*}
& {\left[F_{1}^{V}\left(q^{2}\right)\right]^{2}+q^{2}\left(\frac{\mu^{V}}{2 M_{N}}\right)^{2}\left[F_{2}^{V}\left(q^{2}\right)\right]^{2}} \\
& \quad+\int_{M_{n}+\left(q^{2}+M M_{n}^{2}\right) / 2 M_{N}}^{\infty} d q_{0}\left[\beta^{(-)}\left(q_{0}, q^{2}\right)-\beta^{(8)}\left(q_{0}, q^{2}\right)\right]=1, \tag{19}
\end{align*}
$$

where the superscript V denotes the fact that we are dealing with the isovector part of the current; the isovector anomalous magnetic moment $\mu^{V}=\mu_{p}{ }^{\prime}-\mu_{n}{ }^{\prime}$ $=3.70$. As $q^{2} \rightarrow 0$, we see from Eq. (10) or (17) that only the first term, $\left[F_{1}^{V}\left(q^{2}\right)\right]^{2}$, on the left-hand side of Eq. (19) survives, and as $q^{2} \rightarrow 0$ it goes to 1 , in agreement with the left-hand side.
In the derivation ${ }^{3}$ of Eq. (18) only two assumptions enter: (1) the commutation relation Eq. (3a) of the F-spin densities, and (2) an unsubtracted dispersion relation for the forward Compton scattering amplitudes (which are the coefficients of $p_{\mu} p_{p}$ and $q_{\mu} q_{v}$ in the expansion of $\left.T_{\mu \nu}\right)$ corresponding to $\beta\left(q_{0}, q^{2}\right)$. It is of course the second assumption which is most open to question. However, we note the following:
(a) The fact that as $q^{2} \rightarrow 0$ the left- and right-hand sides of Eq. (19) as it now stands automatically become equal rules out a q^{2}-independent subtraction. This just means we have done nothing grossly wrong, e.g., introduced a kinematic singularity in q^{2} in one of our amplitudes.

$$
\begin{align*}
a\left(q, q q^{2}\right)= & \left(q^{2} / 4 M_{N}\right)\left[F_{1}\left(q^{2}\right)+\mu F_{2}\left(q^{2}\right)\right]^{2} \delta\left(q 0-q^{2} / 2 M_{N}\right) \\
& =\left(q^{2} / 4 M^{N}\right)\left[G_{M}\left(q^{2}\right)\right]^{3}\left(q\left(q_{0}-q^{2} / 2 M_{N}\right)\right. \tag{8a}
\end{align*}
$$

and

$$
\begin{array}{r}
\beta\left(q q^{2}\right)=\left\{\left[F_{1}\left(q^{2}\right)\right]^{2}+\left(q^{2} \mu^{2} / 4 M_{N}\right)\left[F_{2}\left(q^{2}\right)\right]^{2}\right\} \\
\times \delta\left(q_{0}-q^{2} / 2 M_{N}\right) \\
=\frac{\left[G_{E}\left(q^{2}\right)\right]^{3}+\left(q^{2} / 4 M_{N^{2}}\right)\left[G_{M}\left(q^{2}\right)\right]^{2}}{1+q^{2} / 4 M_{N^{2}}} \\
\times \delta\left(q_{0}-q^{2} / 2 M_{N}\right) . \tag{8c}
\end{array}
$$

It is easily verified that on putting these one-mucleonstate contributions to a and β in Eq. (6) and integrating over des 3, one oblains the Robenbluth formula five elastic electron-nucleon scattering.

Since $\alpha\left(q_{0}, q^{3}\right)$ and $\beta\left(q_{0}, \mu^{2}\right)$ are related to the imaginary part of forward Compton scattering of photons of

[^0]. Note that Gillman has two extra factor of M in equation 12, 13 (which cancel) with respect to modern definitions so Alpha is what we call W1 and Beta is what we call W2 today.
\[

$$
\begin{align*}
& \frac{d \sigma}{d Q^{2} d E^{4}}=\frac{4 \alpha^{2}}{q^{4}} \frac{E^{2}}{M_{N}} \\
& \quad \times\left[2 W_{1}\left(q^{2} q \cdot p\right) \sin ^{2}\left(\frac{1}{q}\right)+W_{2}\left(q^{2}, q-p\right) \cos ^{2}\left(\frac{1}{\theta}\right)\right] \tag{12}
\end{align*}
$$
\]

so that their functions W_{1} and W_{2} are related to α and β by

$$
\begin{align*}
& u=W_{1} / M_{N}, \\
& \beta=W_{2} / M_{N} . \tag{13}
\end{align*}
$$

lochester

F.Gillman, Phys.Rev. $167,1365(1968)-10$	$\boldsymbol{q}=\boldsymbol{W} \boldsymbol{H}$
Adler like Sum rules for electron scattering.	$\beta=W_{\mathbf{2}}$

Before:
$\left[1-\mathrm{Ge}^{2 \mathrm{el}}\right]=1-1 /\left(1+\mathrm{Q}^{2} / 0.71\right)^{4}$
$=1-\left(1-4 Q^{2} / 0.71\right)=$
$=1-\left(1-Q^{2} / 0.178\right)=$
$->\mathrm{Q}^{2} / 0.178$ as $\mathrm{Q}^{2}->0$
Is valid for VALENCE QUARKS FROM THE ADLER SUM RULE FOR the Vector part of the interaction

Versus Our GRV98 fit with
$\mathrm{Q}^{2} /\left(\mathrm{Q}^{2}+\mathrm{C}\right)->\mathrm{Q}^{2} / \mathrm{C}$
$\mathrm{c}=0.1797+-0.0036$

And C is probably somewhat different for the sea quarks.

F2nu-p (vector) $=d+$ ubar
F2nubar-p(vector) $=u+$ dbar
$1=$ F2nubar-p-F2nu-p= (u+dbar)-
(d+ubar)
$=(\mathrm{u}-\mathrm{ubar})-(\mathrm{d}-\mathrm{dbar})=1$
INCLUDING the
$\mathrm{x}=1$ Elastic contribution
Therefore, the inelastic part is
reduced by the elastic $x=1$ term.

$$
2=g_{A}\left(q^{2}\right)^{2}+F_{1}^{v}\left(q^{2}\right)^{2}+q^{2} F_{2}^{v}\left(q^{z}\right)^{3}+\int_{M_{x+M}}^{\infty} \frac{W}{M_{N}} d W\left[\beta^{(-)}\left(q^{2}, W\right)-\beta^{(+)}\left(q^{2}, W\right)\right] ; \quad \beta=W_{2}
$$

Above is integral of $\mathrm{F} 2(\mathrm{\square} \mathrm{w}) \mathrm{d}[\mathrm{w} / \mathrm{D} \mathrm{w}$ Since: $[\mathrm{w}=$ $\left[\mathrm{Q}^{\prime} 2+\mathrm{B}\right] /\left[\mathrm{M}\left[(1+(1+\mathrm{Q} 2 / \square 2)) 1 / 2+\mathrm{A}^{-}\right.\right.$ At low Q2 $\quad \mathrm{W}=\left[\mathrm{Q}{ }^{\prime} 2+\mathrm{B}\right] / 2 \mathrm{M} \square$ where $\mathrm{Q}^{\prime} 2=\left[\mathrm{Q} 2+\mathrm{m}_{\mathrm{F}}{ }^{2}\right]$ And B and A to account for effects of additional Dm from NLO and NNLO effects.

$$
\begin{aligned}
& \mathrm{W} 2=\mathrm{M} 2+2 \mathrm{MD}-\mathrm{Q} 2 \\
& 2 \mathrm{~W} \mathrm{dW}=2 \mathrm{M} \mathrm{~d}
\end{aligned}
$$

At fixed Q2 $(\mathrm{W} / \mathrm{M}) \mathrm{dW}=\mathrm{d} \square$
[w= [Q'2 +B] / 2M
$\mathrm{d}\left[\mathrm{w}=\left[\mathrm{Q}^{\prime} 2+\mathrm{B}\right] / 2 \mathrm{M}[\mathrm{d}[\square]\right.$ $\mathrm{d} \square=\square \mathrm{d} \square \mathrm{w} / \mathrm{D} \mathrm{w}$

	-C=0.178	-Adler	-Adler ${ }^{-}$	$\bullet 0.71$	$\begin{aligned} & \mathrm{SV}=\mathrm{F} 1 \mathrm{v}^{* *} 2+\mathrm{Q} 2 \mathrm{~F} 2 \mathrm{v}^{* *} 2= \\ & (1 /[1+\mathrm{Q} 2 / 4 \mathrm{M} 2]) * \end{aligned}$
-Q2	- Q2/(Q2+C)	-Vector	-Axial	1-GD2	
$\cdot 0$	$\cdot 0.000$	$\cdot 0.000$	-0.058	\bullet	$[1+4.71 * 02 /(4 \mathrm{M} 2)] * * 2+\mathrm{Q} 2\}$
$\bullet 0.1$	$\cdot 0.360$	-0.227	-0.063	-0.410	$\left.[1+4.71 * \mathrm{Q} 2 /(4 \mathrm{M} 2)]^{* *} 2+\mathrm{Q} 2\right\}$
$\bullet 0.25$	$\cdot 0.585$	-0.470	$\bullet 0.525$	$\bullet 0.701$	And (1-SV) is the vector
$\cdot 0.5$	$\cdot 0.738$	-0.701	$\cdot 0.812$	$\cdot 0.881$	suppression$\mathrm{GD} 2=1 /[1+\mathrm{Q} 2 / 0.71]^{* *} 4$
$\bullet 0.75$	-0.809	-0.819	$\bullet 0.911$	$\bullet 0.944$	
$\cdot 1$	$\cdot 0.849$	$\bullet 0.883$	$\bullet 0.953$	$\bullet 0.970$	
-1.25	$\cdot 0.876$	-0.921	-0.973	$\bullet 0.983$	At Q2 = 0
$\cdot 1.5$	$\cdot 0.894$	$\cdot 0.945$	$\bullet 0.983$	$\cdot 0.989$	
$\cdot 2$	-0.918	-0.970	$\bullet 0.993$	-0.995	$(1-\mathrm{SV}) / \mathrm{Q} 2=$
-2.25	-0.927	-0.977	$\bullet 0.995$	-0.997	$(4 / 0.71-3.71 /(2 \mathrm{M} 2)+1)=$
-2.5	-0.934	-0.983	-0.996	$\cdot 0.998$	$4.527=1 / 0.221$
-2.75	-0.939	-0.986	-0.997	$\bullet 0.998$	
$\cdot 3$	-0.944	$\bullet 0.989$	$\cdot 0.998$	-0.999	Will give better photoproduction Cross section.
$\bullet 4$	-0.958	-0.995	-0.999	$\cdot 0.999$	
$\cdot 5$	$\cdot 0.966$	-0.997	-1.000	-1.000	
-10	$\cdot 0.983$	-1.000	-1.000	-1.000	
-20	-0.991	-1.000	-1.000	-1.000	
-100	$\bullet 0.998$	$\bullet 1.000$	$\cdot 1.000$	$\bullet 1.000$	
Arie Bodek, Univ. of Rochester					

Stein etal PRD 12, 1884 (1975) -- getting photoproduction cross sections

$$
\begin{align*}
\sigma_{\text {tut }}\left(q^{2}, W\right)=\frac{1}{\Gamma_{T}} \frac{d^{2} d}{d Q d E^{\prime}} & =\sigma_{T}+氏 \sigma_{L} \\
& =\sigma_{R}\left(q^{2}, W\right)+\sigma_{\text {bid }}\left(q^{2}, W\right), \tag{20}
\end{align*}
$$

where σ_{R} and $\sigma_{\text {mad }}$ are the resonance and background contributions to the cross sections. In order to remove some of the known kinematic variations, we write the structure function νW_{a} as

$$
\begin{align*}
\nu W_{2}\left(q^{2}, W\right)= & {\left[1-W_{2}^{\mathrm{d}}\left(q^{2}\right)\right] F_{2}\left(\omega^{2}\right) B\left(q^{2}, W\right) } \\
& \times\left[4 \pi^{2} \alpha F_{2}\left(\omega^{*}\right) \lim _{q^{2} \rightarrow 0} \frac{1-W_{l}^{e}\left(q^{2}\right)}{q^{2}}\right]^{=1} \tag{21}
\end{align*}
$$

where the term in the large square brackets is included so that

$$
\begin{equation*}
\lim _{\psi^{2} \rightarrow 0} B\left(q^{2}, W\right)=\sigma_{p^{(}}(W) \tag{22}
\end{equation*}
$$

and $\sigma_{p p}(W)$ is the total photoproduction cross section. This makes

$$
\begin{align*}
B\left(q^{2}, W\right)= & {\left[\frac{q^{2}}{1-W_{2}^{\mathrm{s}}\left(q^{2}\right)} \lim _{q^{2} \rightarrow 0} \frac{1-W_{1}^{\mathrm{z}}\left(q^{2}\right)}{q^{2}}\right] } \\
& \times\left(\frac{\omega}{q^{2}+v^{2}}\right)\left(\frac{1+R}{1+\epsilon R}\right)\left[\frac{F_{0}(\infty)}{F_{2}\left(w^{2}\right)}\right] \sigma_{v a}\left(q^{2}, W\right), \tag{23}
\end{align*}
$$

where we have used $R=0.23 q^{2}$ which has the cor-
We can use the above form from Stein et al except:

1. We use Xsiw instead of omega prime
2. We use F2 (Q2min where QCD freezes instead of F2 (infinity)
3. We use our form for 1-SV derived from Adler sum rule for [1-W2(elastic,Q2)]
4. We use R1998 for R instead of 0.23 Q2.
5. Limit (1-SV)/Q2 is now 4.527 or 1/0.221

What about the fact that Adler sum rule is for Uv-Dv as measured in vector and axial scattering, on light quarks, what above Strangeness Changing -

One could gets the factors for Dv and Uv separately by using the Adler sum rules for the STRANGNESS CHANGING (DS=+-1 proportional to $\sin 2$ of the Cabbibo angle)(where he gets 4,2) if one knew the Lambda and Sigma form factors (F1v, F2v, Fa) as follows. Each gives vector and axial parts here cosTC and SinTc are for the Cabbibo Angle.

1. $\quad \mathrm{F} 2 \mathrm{nub}-\mathrm{p} \quad(\mathrm{DS}=0) / \operatorname{cosTc}=\mathrm{u}+\mathrm{dbar}$ (has neutron final state udd quasielatic)
2. $\mathrm{F} 2 \mathrm{nu}-\mathrm{p}(\mathrm{DS}=0) /(\operatorname{costTc}=\mathrm{d}+$ ubar (only inelastic final states)
3. F2nub-p $(\mathrm{DS}+-1) / \sin \mathrm{Tc}=\mathrm{u}+\operatorname{sbar}$ (has Lambda and Sigma0 uds qausi)
4. F2nu-p $(\mathrm{DS}+-1)=/ \sin T c=\mathrm{s}+\mathrm{ubar}$ (making uud + sbar continuum only) $)$
5. F2nub-n $(D S+-1)=d+\operatorname{sbar}$ (has Sigma $-=$ dds quasi)
6. F2nu-n (DS+-1)=s + ubar (making udd + sbar continuum only) $)$
A. strangeness conserving is Equations 1 minus $2=U v-D V=1 \mathrm{~V}+1 \mathrm{~A}=2$ (and at $\mathrm{Q} 2=0$ has neutron quasielastic final state) (one for vector and one for axial)
B. strangeness changing on neutrons is Equation 5 minus $6=\mathrm{Dv}=1 \mathrm{~V}+1 \mathrm{~A}=2$ (and at Q2=0 has Sigma- qasielastic)
C. strangeness changing on protons is Equation 3 minus $4=U v=2 V+2 \mathrm{~A}=4$ (and at Q2 $=0$ has both Lambda0 and Sigma0 qausielastic. Note according to Physics reports artilce of Llwellyn Simth - DeltaI=1/2 rule has cross section for Simga0 at half the value of Sigma+).

Need to add charm final states

1. F2nub-p $(\mathrm{DS}=0) / \operatorname{cosTc}=\mathrm{u}+\mathrm{dbar}$ (has neutron final state udd quasielatic)
2. F2nu-p $(\mathrm{DS}=0) /(\operatorname{costTc}=\mathrm{d}+$ ubar (only inelastic final states)
3. F2nub-p $(\mathrm{DS}+-1) / \operatorname{sinTc}=u+$ sbar (has Lambda and Sigma0 uds qausi)
4. F2nu-p $(\mathrm{DS}+-1)=/ \operatorname{sinTc}=\mathrm{s}+\mathrm{ubar}$ (making uud + sbar continuum only) $)$
5. F2nub-n $(D S+-1)=d+\operatorname{sbar}$ (has Sigma $-=$ dds quasi)
6. F2nu-n (DS+-1) $=\mathrm{s}+\mathrm{ubar}$ (making udd + sbar continuum only) $)$
A. strangeness conserving is Equations 1 minus $2=U v-D V=1 \mathrm{~V}+1 \mathrm{~A}=2$ (and at $\mathrm{Q} 2=0$ has neutron quasielastic final state) (one for vector and one for axial)
B. strangeness changing on neutrons is Equation 5 minus $6=\mathrm{Dv}=1 \mathrm{~V}+1 \mathrm{~A}=2$ (and at Q2=0 has Sigma- qasielastic)
C. strangeness changing on protons is Equation 3 minus $4=U v=2 \mathrm{~V}+2 \mathrm{~A}=4$ (and at Q2=0 has both Lambda0 and Sigma0 qausielastic. Note according to Physics reports artilce of Llwellyn Simth - DeltaI $=1 / 2$ rule has cross section for Simga0 at half the value of Sigma+).

Additional references to look at

Llewellyn Smith Phys. Reports C has most of the stuff
See also: S. Adler, Ann. Phys. 50 (1968) 189 where he does electroproduction and photoprduction in first resonance but has deviations at high Q2 (did not know about DIS)
For Lambda production in neutrino see: V. V. Ammosov et al JETP Letters 43, 716 (1986) and references in it to earlier Gargamelle data (comparison with LLS papers)
See K. H. Althoff et al Phys Lett. B37, 535 (1971) for Lamda S Form factors from decays.
For Charm production one needs to understand Charm Lambda C transition form factor to see what the low Q2 suppression is for the DIS. Is it the nucleon intital state form factor or the final state smaller LambdaC. Probably initital state/

For example http://jhep.sissa.it/archive/prhep/preproceeding/003/020/stanton.pdf
Form factors in charm meson semileptonic decays.
By E791 Collaboration (N. Stanton for the collaboration). 1999. 8pp.
Prepared for 8th International Symposium on Heavy Flavor Physics (Heavy Flavors 8), Southampton, England, 25-29 Jul 1999.
Says for single pole fits MV=2.1 and MA=2.5 for the D meson
Versus
Analysis of pion-helium scattering for the pion charge form factor.
By C.T. Mottershead (UC, Berkeley). 1972.
Published in Phys.Rev.D6:780-797,1972 which gives
For Gaussian and
Yukawa pion charge distributions. The results indicate $2.2<\mathrm{r} \mathrm{pi}<3.2 \mathrm{~F}$

Modified LO PDFs for all Q ${ }^{2}$ (including 0)

Results for Scaling variable

FIT results for K photo-production threshold
$\square \quad\left[\mathrm{w}=\left[\mathrm{Q}^{2}+\mathrm{B}\right] /\left[\mathrm{M}\left[\left(1+\left(1+\mathrm{Q}^{2} / \square^{2}\right)^{1 / 2}\right)+\mathrm{A}\right]\right.\right.$

- $A=0.418 \mathrm{GeV}^{2}, \quad B=0.222 \mathrm{GeV}^{2}$ (from fit)
- A=initial binding/target mass effect plus NLO +NNLO terms)
- $\mathrm{B}=$ final state mass $\square \mathrm{m}^{2}$ from gluons plu s initial Pt.
- Very good fit with modified GRV98LO
- $\square^{2}=1268$ / 1200 DOF
- Next: Compare to Prediction for data not included in the fit

1. Compare with SLAC/Jlab resonance dat a (not used in our fit) $->\boldsymbol{A}\left(\mathbf{w}, \mathbf{Q}^{2}\right)$
2. Compare with photo production data (\mathbf{n} ot used in our fit)-> check on K producti on threshold
3. Compare with medium energy neutrino d ata (not used in our fit)- except to the ex tent that GRV98LO originally included ve ry high energy data on xF_{3}

$$
\begin{gathered}
F_{2}\left(x, Q^{2}\right)=K * F_{2 Q c D}\left(\square w, Q^{2}\right) * A\left(w, Q^{2}\right) \\
F_{2}\left(x, Q^{2}<0.8\right)=K * F_{2}\left(\square w, Q^{2}=0.8\right)
\end{gathered}
$$

For sea Quarks we use
$\mathrm{K}=\mathrm{Ksea}=\mathbf{Q}^{2} /\left[\mathrm{Q}^{2}+\right.$ Csea]
Csea $=0.381 \mathrm{GeV}^{2}$ (from fit)
For valence quarks (in order to satisfy t he Adler Sum rule which is exact do wn to Q2=0) we use
$K=$ Kvalence
$=\left[1-G_{D}{ }^{2}\left(Q^{2}\right)\right]\left[Q^{2}+C 2 V\right] /\left[Q^{2}+C 1 V\right]$
$G_{D}{ }^{2}\left(Q^{2}\right)=1 /\left[1+Q^{2} / 0.71\right]^{4}$
$=$ elastic nucleon dipole form factor $\mathbf{s q}$ uared. we get from the fit
$\mathrm{C} 1 \mathrm{~V}=0.6 \overline{0} \mathrm{GeV}^{2}, \mathrm{C} 2 \mathrm{~V}=0.485 \mathrm{GeV}^{2}$
Which Near $\mathbf{Q}^{2}=\mathbf{0}$ is equivalent to:
Kvalence ~ $\mathbf{Q}^{2 /}$ [$\mathbf{Q}^{2}+$ Cvalence]
With Cvalence $=(0.71 / 4)^{*} \mathrm{C} 1 \mathrm{~V} / \mathrm{C} 2 \mathrm{~V}=$ $=0.221 \mathrm{GeV}^{2}$

Adler Sum rule EXACT all the way down to $\mathrm{Q}^{2}=0$ includes W_{2} quasi-elastic

Origin of low Q2 K factor for Valence Quarks

- $\square-W_{2}$ (Anti-neutrino -Proton)
- $\quad \square+=W_{2}$ (Neutrino-Proton) $q 0=\square$

The vector current part of the original sum rule on $g_{A}\left(q^{2}\right)+\int_{M_{n}+\left(q^{2}+M_{7}^{2}\right) / 2 M N}^{\infty} d q_{0}\left[\beta^{(-)}\left(q_{0}, q^{2}\right)-\beta^{(\theta)}\left(\eta_{0}, q^{2}\right)\right]=1$,

AXIAL Vector part of W_{2} Adler for neutrino scattering can be written

Adler is a number sum rule at high Q^{2}

$$
\begin{equation*}
\int_{0}^{\infty} d q\left[\beta^{(-)}\left(q_{0}, q^{2}\right)-\beta^{(+)}\left(q_{0}, q^{2}\right)\right]=1 . \tag{18}
\end{equation*}
$$

If we explicitly separate out the nucleon Born term in Eq. (18), we have

$$
\left[F_{1}^{V}\left(q^{2}\right)\right]^{2}+q^{2}\left(\frac{\mu^{V}}{2 M_{N}}\right)^{2}\left[F_{2}^{V}\left(q^{2}\right)\right]^{2}
$$

$+\int_{M_{n}+\left(q^{2}+M_{z}\right)}^{\infty} d q_{2} M_{N}\left[\beta^{(-)}\left(q_{0} q^{2}\right)-\beta^{(8)}\left(q_{0}, q^{2}\right)\right]=1,0$
$\int_{0}^{\infty} d q 0\left[\beta^{(-)}\left(q_{0}, q^{2}\right)-\beta^{(+)}\left(q_{0}, q^{2}\right)\right]:=1$ is

$$
F_{2}^{-}=F_{2}(\text { Anti-neutrino -Proton })=\square W_{2}
$$

Vector Part of W2
$\mathrm{F}_{\mathbf{2}}{ }^{\boldsymbol{+}}=\mathrm{F}_{\mathbf{2}}$ (Neutrino-Proton) $=\square \mathbf{W}_{\mathbf{2}}$ we use: $\mathbf{d}(\mathbf{q} 0)=\mathbf{d}(\square)=(\square) d \square / \square$

Valence Quarks

 Fixed $\mathrm{q}^{2}=\mathrm{Q}^{2}$Adler Sum rule EXACT all the way down to $Q^{2}=0$ includes W_{2} quasi-elastic

$$
\begin{aligned}
& \text { Quasielastic } \square \text {-function } \\
& 1= \\
& \text { (} \mathrm{F}_{2}-\mathrm{F}^{+}{ }_{2} \text {) } \mathrm{d} \square / \square \\
& + \\
& \text { Integral of Inelastic } \\
& \text { Integral Separated out } \\
& \text { both resonances and DIS } \\
& \left.g_{V}\left(q^{2}\right)=\left[F_{1}^{v}\left(q^{2}\right)\right]^{2}+q^{2}\left(\frac{\mu^{V}}{2 M_{N}}\right)^{2}\left[F_{2}^{v} v q^{2}\right)\right]^{2} \\
& \square \text { pion threshold } \\
& \left.\prod_{0}^{\square \square U_{v}^{Q C D}}\left(\square_{W}\right) \square \|_{v}^{Q C D}\left(\square_{W}\right)\right]\left[1 \square g_{v}\left(Q^{2}\right)\right] d \rrbracket_{W} / \square_{W} \\
& \xrightarrow[0 \text { pion threstold }]{0}+g_{V}\left(Q^{2}\right)=1 \\
& N\left(Q^{2}\right)=\prod_{0} \square_{W} U_{v}^{\varrho C D}\left(\square_{W}\right) \square \Omega U_{v}^{\varrho C D}\left(\square_{W}\right) d d \square_{W} / \square_{W}
\end{aligned}
$$

If we assume the same
form for Uv and Dv --->
$F_{2}^{V A L E N C E}\left(\square_{W}, Q^{2}\right)=\frac{\left[N^{Q C D}\left(\square_{W}, Q^{2}\right)\right]\left[1 \square g_{V}\left(Q^{2}\right)\right]}{N\left(Q^{2}\right)}$

Adler Sum rule EXACT all the way down to $\mathrm{Q}^{2}=0$ includes W_{2} quasi-elastic

$F_{2}^{\text {VALENCE Vector }}\left(\square_{W}, Q^{2}\right)=\frac{L_{W} V^{2 w}\left(\square_{W}, Q^{2}\right)}{N\left(Q^{2}\right.}$	atisfies Adler umber sum Ru all fixed Q^{2}
$\begin{aligned} & \overbrace{0}^{1} \frac{\left.F_{2}^{\square}\left(\square, Q^{2}\right) \square F_{2}^{+}\left(\square, Q^{2}\right)\right]}{\square} d \square=\prod_{0}^{1} U_{v}(\square) \square D_{v}(\square)] d \square=1 \text { exact } \begin{array}{l} F_{2}{ }^{-}=F_{2} \text { (Anti-neutrino -Proton) } \\ \mathrm{F}_{2}{ }^{+}=\mathrm{F}_{2} \text { (Neutrino-Proton } \end{array} \\ & \square_{0}^{1} F_{2}^{\text {Valence } \left.\left(\square, Q^{2}\right)+F_{2}^{\text {sea }}\left(\square, Q^{2}\right)+x g\left(\square, Q^{2}\right)\right] d \square \square 1} \begin{array}{l} \text { While momentum sum } \\ \text { Rus QCD and Non Pertu. } \\ \text { corrections } \end{array} \end{aligned}$	

\emptyset Use: $K=$ Kvalence $=\left[1-G_{D}{ }^{2}\left(Q^{2}\right)\right]\left[Q^{2}+C 2 V\right] /\left[Q^{2}+C 1 V\right]$

- Where C2V and C1V in the fit to account for both electric and magnetic terms
- And also account for $\mathbf{N}\left(\mathrm{Q}^{2}\right)$ which should go to 1 at high Q^{2}.
- This a form is consistent with the above expression (but is not exact since it assume s no dependence on \square_{w} or W (assumes same form for resonance and DIS)
- Here: $G_{D}{ }^{2}\left(Q^{2}\right)=1 /\left[1+Q^{2} / 0.71\right]^{4}=$ elastic nucleon dipole form factor

[^0]: ${ }^{*}$ The quantity $f_{p}(x)$ is the Heisenberg electromagnetic current operator divided by the electronic charge a. By the conserved-vector-current hypothesis, $J_{H}(x)$ is just the F-spin current, ie., $J_{n}^{(x)}(x)=E_{v p}(x)$.
 $F_{1}\left(q^{3}\right)$ and $F_{2}\left(q^{4}\right)$ are the usual Dirac and Pauli electromagnetic form lactors of the nucleon, normalized so that $F_{1}(0)=F_{7}(0)=1_{p}$ and μ is the anomaloas magnetic moment in Bohr magnetons $\left.G_{E}=F_{1}-q^{\mu} \mu / 4 M^{2}\right) F_{2}$ and $G_{M}-F_{1}+F^{F}$ are the Sachs electric and magnetic form factors of the nucloon.

