The (Marginally)COmpIete GUlde tO

Hyhre




What Hypre is:

A library of numerical solvers and preconditioners
Written in C, uses MPI

Interfaces with our code as a series of black-box
functions (data goes in, data comes out).

Our hypre-calling code is contained within lib/
hypreBEAR.f90

The C-Fortran interfaces are found in the C
libraries lib/extended _hypre wrapper.c,
extended hypre wrapper.h



How Hypre interfaces with AstroBEAR:

ReadHypreData(): Reads in hypre-specific data parameters
from domain.data.

Hypre_InitializeMatrixCoeffs(): Initializes an array containing
the weighted coefficients of a 1D equation’s matrix entry.

SetHyprelnfo(): Loads the settings of a hypre run into a
Hyprelnfo data structure.

HypreSize(): Returns the size of a Hyprelnfo structure.

Hypre(): A single hypre “solve” is executed on each processor.



A higher-level view...




An elliptic step is started in bearez.f90 by calling Elliptic().

Elliptic() sets up the hypre step’s parameters and signals each
processor to call Hypre().

Depending on the nature of the problem, multiple hypre steps
can be called within Elliptic().

Hypre handles its own MPI calls, so the elliptic solving is
synchronized without AstroBEAR’s involvement.



Using Hypre

Hypre solves equation systems cast in the form of
an Ax=b matrix problem.

A is the coefficient matrix.
X is the solution vector that is returned.
b is the variable or input vector.

Constructing these three structures constitutes
the bulk of AstroBEAR’s work in this process.



Important Hypre terms:

Conceptual Interface: Hypre’s term to describe the structure, nature and
geometry of the problem domain. These interfaces can resemble a mesh, a matrix,
or something considerably more complicated.

Structured Interface: A conceptual interface where the problem domain
resembles aregular mesh. The matrix is assembled using stencils, because the
entire problem domain has a regular shape. Use this interface for fixed-grid
problems.

Semi-Structured Interface: A conceptual interface where problem domains are
composed of several structured subdomains called partitions. These partitions are
joined at the edges by user-specified mappings called graph entries. AMR uses the
semi-structured interface, and each level is considered a partition.

Solver: The numerical engine used to solve the system of equations. Hypre has
many solver options; right now self-gravity only uses PCG and GMRES.

Preconditioner: An operator applied to the equation matrix to improve the
system’s speed or its rate of convergence. We currently do not use a
preconditioner in self-gravity.



Rough Hypre algorithm

Create Grid (set grid extents).
Create Stencil (set up stencil entries).
Create Graphs (set up graph entries).

Create Matrix (set matrix coefficients).

Create Vectors (populate variable, solution vectors).
Create Solver (solve system).

Retrieve Solution.



Hypre data structures

* Grid: Represents the problem domain. The
dimensions of AstroBEAR grids are fed into
this structure.




e Stencil: The arrangement of values in the matrix
that hypre uses to solve the system. Stencil

values are usually expressed in terms of steps
from a cell.

e Stencils generally have a size 2*nDim + 1.

4
0 0 0
T | o " 1 1 0
L S99 5 1 0
o 3 0 1
3 4 0 1




Graph: Only used in a semi-structured interface. This
is an explicit mapping between two different partitions.

— Graph entries are unidirectional—a graph entry can map a
child cell to its parent, but a separate entry is required to
map a parent to its child.

— The current algorithm only maps cells to their parents.




 Matrix: The coefficient matrix used by hypre to
represent spatial derivatives.

— In a structured interface, these matrix elements are
determined only by stencils.

— In a semi-structured interface, graph entries set the matrix
values as well.

— The matrix information is constructed and passed into
hypre as a 1D array.

— Each cell n has a number of matrix entries equal to
stencil_entries + graph_entries(n).

— A three-dimensional i *j * k problem domain will have aj *
j*kbyi*j*kmatrix.



Matrix: A self-gravity example

2 i’ IO o 0 4D +@ 0
V (I) — o"x2+&y2 — i-1,j TP TR0 TR

matrix(i,j)=[-4 1 1 1 1]

A more complicated example:




Vector: A 1D array that either feeds data into
hypre or reads it out.

— variableVector (b) is constructed by flattening data
from the problem domain into a 1D array.

— SO
SO

— SO

utionVector (x) returns the results of hypre’s
ve attempts.

utionVector is initially populated with a best-

guess solution to speed up convergence.

— In self-gravity, variable vector is initialized to 4xGp
and solution vector returns .



e Solver: This is the component that will
actually take all these inputs and return a
solution.

— Hypre has a lot of different solvers, but we

currently only have a few implemented in
AstroBEAR.

— AstroBEAR has PCG solvers implemented on the
structured interface, and PCG and GMRES solvers
for the unstructured interface.



* Solvers tend to have the same core sequence
of steps:
1. Create solver.
2. Set tolerance.

3. Load A, b, x data into solver (the previously-
discussed data structures revolved around
constructing this information).

Solve system.
5. Retrieve solved data.



Tolerance and Convergence

Hypre’s solvers iterate over the system until a certain
number of iterations complete or until the system
convergence.

Convergence criteria are set as part of the solver setup.
The most common criterion is setting the tolerance of the
relative residual.

Once the relative residual is at or below the tolerance, then
the system is considered converged.

The PCG solver is not guaranteed to converge, but is faster
than the GMRES solver.

The GMRES solver is guaranteed to converge, but doing so
may require more time and memory resources than is
practical.



