Detector acceptance tests and characterization

- Acceptance tests to ensure compliance with specifications
 - Source measurements with analog electronics and analysis
 - Specifications developed by detector working group and to be incorporated into contract
 - Test procedure for each specification developed jointly LBNL/MSU
 - MSU tests and advises LBNL of results
 - LBNL decides on disposition of detector
 - Manufacturer can perform the same tests to reduce number of returns
- Detector characterization
 - Pulse shape measurements with collimated source
 - In-beam characterization with analysis
- Perform acceptance tests and characterizations in costeffective manner
 - Develop procedures by scientists and faculty (LBNL/MSU)
 - Production work done by graduate students
 - Continuity and quality assurance by faculty (Glasmacher/Starosta)

Acceptance tests guided by IEEE 325-1996

- Energy resolution for segments and central contact
 - Cryostat pointing down
- Energy resolution for central contact
 - Cryostat pointing up
 - Ambient noise 80 dbC, 85 dbC, 88 dbC, 90dbC
- Absolute efficiency
 - Each crystal
 - triplet
- Peak-to-total ratio
 - Each crystal
 - 3-crystal summing
- Bandwidth of preamp
- Noise power spectrum
- Time resolution at nominal bias (CsF or fast plastic with ²²Na)

Acceptance tests II

- Time resolution at nominal bias (CsF or fast plastic with ²²Na)
- Cross talk between selected channels
- Depletion voltage (manufacturer to provide curve)
- Cool-down time
- Dewar holding time detector pointing up and down
- Heater resistance
- Temperature monitor PT100
- HV shutdown operational
- Mechanical dimensions
 - Crystal cans relative to cryostat
 - Crystal cans relative to mounting flange

Detector characterization

- Singles pulse shape measurements with collimated source on automated 2-D test stand (100 MHz, 12 bits) illuminating detector front
 - Locate front segments relative to optical reference point on cryostat housing (⁵⁷Co)
- Coincidence pulse shape measurements (⁶⁰Co)
 - Measure selected pulse shapes to compare to calculations
 - Segment geometry
 - Crystal orientation
- In-beam measurement with analysis
 - Doppler correction ability with slow and fast beams

MSU experience with highly-segmented HPGe dets

- Completed SeGA (an array of 18 32-fold-segmented HPGe detectors) in 2001 (funded by NSF and MSU) within budget and time
 - SeGA runs about 1500 hrs/year in about half of all NSCL CCF experiments
 - Acceptance tested 18 detectors with graduate students and characterized in automated test stand
- Available infrastructure
 - Dedicated gamma detector laboratory
 - Real-time data acquisition, HV and central contact digitizers for three central contacts, waveform digitizers for 1 crystal
 - Motion control for test stand, but need to build larger test stand
 - LN2 fill system
 - Established procedures (and culture) of handling Ge detectors

W.F. Mueller *et al.*, Nucl. Instr. Meth. **A 466** (2001) 492.

Z. Hu *et al.* Nucl. Instr. Meth. A **482** (2002) 715.

K.L. Miller *et al.* Nucl. Instr. Meth. **A 490** (2002) 140.

