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SUMMARY

Integral form: Differential form:
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Vector derivatives: Cartesian Coordinates

Cartesian.

Gradient :

Divergence :

Crrl :

Laplacian :
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Vector derivatives: Spherical Coordinates

See Appendix A in “Introduction to Electrodynamics” by Griffiths

Spherical. dl

Gradient :

Divergence
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Laplacian :
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Dielectrics: Electric dipole

The electric dipole moment p 1s defined as

where d is the separation ! 1stance between the

charges q pointing from the negative to
positive charge.

Lecture 5 showed that i

—
-r

Vp = r>>d

Ame 12

where T points from the electric dipole towards the
point P. The electric field for the electric dipole, in the
far-field approximation, can be derived from the above

- —
potential since EE = — V1 as was discussed previously.



Forces on an electric dipole in E field
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Forces on an electric dipole in E field

=
. i
Translational force:
N
Fnef — P - VE -‘;5"
This can be rewritten using the vector identity - - ; |
T x (?xﬁ):€(ﬁ-ﬁ)—(ﬁ-?)ﬁzo
since ? X E — 0 for electrostatics. Thus the transla- € > 9 ?}-,"_
tional force can be rewritten as *
———
— — ., — _& _r}ﬂl, ,oha
Fﬂet:v(p'E) -l:'__ —q

This will be used following a discussion of the value
of dipole polarization produced by an electric field.
When the dipole and electric field are aligned then
this simplifies to

— dFE

F... =qd—
t — ¢ A



Dielectric polarization: Microscopic

Atomic polarization:

d~1015m

Molecular polarization:

d~ 1014 m

Align polar molecules:
d~101m

Competition between alignment torque and
thermal motion or elastic forces

Linear dielectrics:

Three mechanisms typically lead to

ot &
) Y, & S D
K, =0 Polar molecules

PcE



Electrostatic precipitator

Linear dielectric: p =ak

Translational force: F... -V (ﬁ . E) ~ V (aE?)



Electrostatic precipitator

Clean
gas out

Discharge
electrode

Electrostatic precipitators are housed in the gray box-
like structures at the base of these smokestacks.

Extract > 99% of ash and dust from gases at power, cement, and ore-processing plants



Electric field in dielectrics: Macroscopic

In the dielectric, the induced (bound) charge distribu-
tion causes an induced electric field E,.; that is oppo-
site to the external electric field. Thus the net field in
the dielectric 1s E, ot = Ecpt — Epor. The induced field
15 zero outside of the dielectric.

The polarization, and thus the induced surface charge
density 0,01, of the dielectric in the parallel-plate ca-
pacitor, depends on E,,.; in the dielectric, not E_,;. For
linear dielectrics the proportionality can be written as;

T pol — XeEOE-net
where the factor ). does not dependent on E, ;.
Gauss’s law can be used to relate the surface charge
distributions to the electric fields. Taking an infin-
itessimal pillbox shaped Gaussian surface enclosing an
element of the capacitor plate, gives that

O-f'ree
Eext -
EQ

Similarly a infinitessimal pillbox-shaped Gaussian sur-
face enclosing an element of the surtace of the dielectric

gives.
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Electric field in dielectrics: Macroscopic

The net field in the dielectric 1s:

~ Oind

1
Enet = Eext — Epof = :_(O-f-ree - O-pof)
£0
The problem with this dependence is that it is neces-
sary to know E,, .+ to compute g, in order to calculate
E..c¢. This problem can be resolved by rewriting this
equation using the dependence of 0,5 on Eppes:

HEEHHOOE
HHHOHOO
HHEHHHHE |2

_ Ofree

HHOOOOE)

Enet(l + Xe) - — - Eea:t ﬁ
£0 e et
Define the dielectric constant @
Re =1+ X, ~ Oing + Ging
then we get: i i _EE____,__ i
| B
+ Eind
= &
Thus E, .+ In the dielectric 1s a factor k. weaker than i L £ ey
when there i1s no dielectric. Knowing E),.; and the i .+
known applied charge distribution o f,.. gives the in- 4 = -+
duced charge density o ,0;: a
S -+
= |
44 +

Ke — 1
Opol = ——— 0 fr
pol Ko free (b)



Polarization density P in dielectrics:

Knowledge of the polarization charge surface charge
density o, requires discussion of the Polarization den-

—
sity P . which is the dipole moment per unit volume.

defined by

g —
P=N<p >

where there are N dipoles/unit volume each with sta-
tistical average individual dipole moment of < p >.

As 1llustrated in figure 5, polarization causes a net
bound charge distribution ¢, at the surfaces where
the equal and opposite positive and negative charge
distributions do not cancel. Note that if the polariza-
tion 1s due to a shift = of the dipole charges. q. where
P = g X, then the net polarization charge for a surface
area dS 1s

NgzcosfdS = NP -dS =P - dS = o,,,dS.
pol

That 1s, we have a direct relation between the polariza-
tion surface charge density o,,;. and the Polarization

" H‘ -
density P. That 1s;

_}. e
Opol = P -1



Polarization density in dielectrics:

—

o

Opol = P -1

The polarization, and thus the induced surface charge

density 0,,1, of the dielectric in the parallel-plate ca-
pacitor, depends on E, .+ in the dielectric, not E_.;.
For linear dielectrics

—

P = N<p>
—
= NaE

The constant of proportionality can be written as;

— — —
P =NaE = x_sE

* ® * * _:,- _:‘-
where inside the dielectric E = E,,.¢. For the parallel-

plate capacitor shown above the polarization charge
density simplifies to

s
Opot = P -n
—

—  Xe£0 Enet -1l



Polarization density in dielectrics:

1
Ernet = Eert — E’pof — E(O—free - O-;uof) I

The problem with this dependence is that it 1s neces- 5
sary to know E,.: to compute 0, in order to calculate -
E,ct. This problem can be resolved by rewriting this

equation using the dependence of 0,5 on E;q4:

O no 0 free
Enet + pol — ! — Ee:t:t
20 £0
] T free
Enet(l + Xe) — ! — Ee:t:t
€D

Define the dielectric constant
Ke = 1+ X,

then we get:

E _ Ofree Eesct
net — -

KeZ0 Ke




The dielectric constant K,

Dielectric constants (at 20° C)

* Net field in a dielectric E . = Eg/x,

Dielectric Dielectric
constant  strength

* Most dielectrics linear up to dielectric strength i s i v
Vacuum 1.0000
Air (1 atm) 1.0006 3 x 10°
Paraffin 2.2 1G % 10°
Polystyrene 2.6 24 x 10°
Rubber, neoprene 6.7 12 % 10°
Vinyl (plastic) 2-4 50 x 10°
Paper a7 15 x 10°
Quartz 4.3 8 x 10°
Oil 4 12 X 10°
Glass, Pyrex 5 14 x 10°
Porcelain 6-8 5 x 10°
Mica 7 150 x 10°
Water (liquid) 80
Strontium

titanate 300 8 X 10°




Volume polarization density

& =
. — A
From charge conservation = =N
PR R
T o1 S + P47 =0 g +
% P Enclosed *° ‘ [/ . N
volume ."
3 WV : +
But *
—_— —
Opol = P -n. Figure 7 Surface and volume bound charge distributions
Thus ‘ue to radial polarization of a sphere of dielectric.
B .as d
Uy = — ‘T
) Enclosed ppol
volume
This can be rewritten using the Divergence theorem to
give
V. Pd d
: T = — T
Enclosed Enclosed ppof
volume volume
That is:
— —
V.-P = _Jo-poi

It is stressed that p,,; is a real volume charge dis-
tribution due to polarization of bound charges in the
dielectric.



Electric Displacement Field

Maxwell’s equations that pertain to electrostatics are

. F_L
£0

and N
VxE=0

The charge distribution p includes all charge dis-
tributions, both bound and free. That 1s

P = pfree + .'Opof

which can be written as

—

:O:pf-ree_v'P



Electric Displacement Field
p:.ﬂf-ree_ﬁ'ﬁ

Gauss’s law 1s

— —
E‘,’Ezﬁ_ Jof’ree_v'P
£0 20
This can be rewritten as

—  —

sy . — —
EDVE+VP :V'(EDE_‘_P):JOJ*‘TEE

A new vector field fi called the electric displacement
1s defined to be

—
D

— —
soE+ P

Using this definition gives

— —

V-D — Pfree



Electric Displacement Field

The usefulness of introducing this new field D is
because the polarization of inear dielectrics 1s propor-
tional to the effective field in the dielectric. That 1s, 1t
can he written as

P = x.5E
where yv.2g = Na. Thus this gives
D=:5E+ P =z (1 —|—;{E]E
Using the definition of the dielectric constant

ke =1+ x.

gives

_}
D =z E

It 1s fortunate that many dielectrics are linear, that

15 K. 18 iIndependent of E. The polarization of the di-
electric then ecan be buried in the dielectric constant
Ke.



Electric Displacement Field

The problem of handling the polarization charges for
dielectric materials in Maxwell's Equations 1s greatly
simplified using the concept of electric displacement

field . . .
D=sE+P=:5(1+x.)E

where X_ 1s the electric susceptibility. Fortunately
many dielectrics are linear and thus )_ 1s a constant.
Using the definition of the dielectric constant

ke = 1 + X,
gives

— —

D =k E

The infulence of the dElectric can be absorbed into
the displacement field D allowing a modified form of
maxwell’s Equations to be written. Namely

—

—
V-D :.'Of-ree

E'}XE}:U



Summary; 1

This lecture has focussed on the mﬂuence _of matter
on electric fields. The electric dipole p = qcl plays a
pivotal role in this discussion. The forces on an electric
dipole 1n an electric field are:

!l
I
e
by
|

Torgue

E

,-]1

P

k|
||

Translation

For linear dielectrics p = oE.
The electric field inside a dielectric, E,,.; for a di-
electric constant k., 1s related to the appled field E,...

by
—
3 . Efree
net —
Ke

Where the induced charge density oo 15 related to the
induced electric field E;,4 by:

_ Opo
Epor = —
£



Summary; 2

A modified form of Maxwell's equations tor elec-
trostatics can be written that 1z especially usetul for

solving problems of electric fields 1n hinear dielectrics.

ﬁ'ﬁ:.ﬂfree
VxE=0

where for linear dielectrics



Refraction of the electric field at boundaries
with dielectrics




Capacitance with dielectrics

Consider a parallel-plate capacitor, spacing t. partially

filled with a dielectric slab of thickness d.
The surface charge distribution o ¢,... on the surface
of the capacitor plate is related to E¢*" by Gauss’s law,

that 1s
Jf?"ee

Ejl_z-r — A
=0
Inside the dielectric this field 1s reduced by the factor
Ke, that 1s
Ejﬁ_iefectr-ic _ O-free

KeZo

Thus the potential difference between the capacitor
plates 1s given by the line integral:

, E . ' dielectri
A‘[ _ _/ E . dl — (f— d) "ja_w _|_dE_?,e ectric

_ d
AV = (t — d)E®" + —E"

KRe

b

AV — O free
£0

Re

t e T T T T T I ‘i
R :Id{:

— ., s— — e— e, —-—

free

SIince 0 free = % we get that the net capacitance of the
partially-filled parallel-plate capacitor is:

Q Az
e

C=—-=
AV
A useful special case is when the space between the

plates is filled completely with dielectric, then d = ¢
and.:

Aspke
d

The capacitance of a capacitor filled with dielectric of
constant k., 1s a factor k. times larger than when the

C =

region between the capacitor plates is a vacuum. That
18;

h’t’. C’U oL

Odiefect ric —



Capacitance with dielectrics

Cdéel ectric — Ke Cvacuum

Insulator




Electric energy storage

» Showed last lecture that the energy stored in a capacitor is given by

where for a dielectric Cdiefectric — Ke O’UCLCHU-TTI

* Typically it is more useful to express energy in terms of magnitude of the electric field E.

* It can be shown that the energy density in the E fieldis 7 = %HEEDEQ joules/ ms

 Thus the total stored energy is given by integrating the energy density over all space

P L
U = - Efiea[}E 7

space

Note that the energy stored is proportional to «,



Electric energy storage

» Showed last lecture that the energy stored in a capacitor is given by

where for a dielectric Cdiefectric — Ke O’UCLCHU-TTI

* Typically it is more useful to express energy in terms of magnitude of the electric field E.

* It can be shown that the energy density in the E fieldis ¢ = %HEEDEQ joules/ ms

* Thus the total stored energy is given by integrating the energy density over all space

Note that the energy stored is proportional to «,



Electric energy storage

Leyden jar:

« Dielectric between concentric cylindrical
capacitor plates

* Store a charge Q on the capacitor

* Demonstrate the stored energy




Concept Quiz 2

Energy storage



Attraction of dielectric between capacitor plates

If Q on plates is fixed then the stored energy in the
capacitor 1s

U = %Q/C

If dielectric is inside the plates then

Cdielec

Therefore the stored energy 1s lower if the capacitor is
filled with dielectric. The increase in energy when the
dielectric is removed equals the work done pulling the
dielectric slab out of the capacitor, that is, it equals the
force them the distance moved.

:Ke Cvac

) — -
G S

Nl

%y e

. Dielectric

e

/



Summary

This lecture has focussed on the influence of_1>natter
on electric fields. The electric dipole p = ¢d plays
a pivotal role in this discussion. The torque on an

electric dipole in an electric field 1s:

H
T =p xE
For linear dielectrics
H
p =aE

. . . . . —} » -
The electric field inside a dielectric, B, for a di-

" . . %
electric constant k., is related to the applied field E ¢,...

by

——d
E r Ef?‘ee
net —
Ke

Where the induced charge density o,,; is related to the
—
induced electric field E,,; by:

—

Epof -

O pol

£0

The electric field at the boundary of a dielectric 1s
refracted since the normal component of the electric
field at the surface i1s reduced by the factor k. in the
dielectric.

The capacitance of a capacitor filled with a dielec-
tric 1s increased by a factor k. relative to the same
capacitor without the dielectric.

Cdiei&ct?‘éc = K¢ Cvacuum

The more general relation for the energy stored in
an electric field, both in and out of dielectrics, is given

by:

1
U = / 5;«;65013%
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