P235-PROBLEM SET 11

To be handed in by 1800 hr on Friday, 4 December 2015.

1. Consider the motion of a particle of mass m in an isotropic harmonic oscillator potential $U=\frac{1}{2} k r^{2}$ and take the orbital plane to be the $x-y$ plane. The Hamiltonian is then

$$
H \equiv S_{0}=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} k\left(x^{2}+y^{2}\right)
$$

Define the three energies

$$
\begin{aligned}
S_{1} & =\frac{1}{2 m}\left(p_{x}^{2}-p_{y}^{2}\right)+\frac{1}{2} k\left(x^{2}-y^{2}\right) \\
S_{2} & =\frac{1}{m} p_{x} p_{y}+k x y \\
S_{3} & =\omega\left(x p_{y}-y p_{x}\right)
\end{aligned}
$$

with $\omega=\sqrt{\frac{k}{m}}$. Use Poisson brackets to solve the following:
a) Show that $\left[S_{0}, S_{i}\right]=0$ for $i=1,2,3$ proving that $\left(S_{1}, S_{2}, S_{3}\right)$ are constants of motion.
b) Show that

$$
\begin{aligned}
{\left[S_{1}, S_{2}\right] } & =2 \omega S_{3} \\
{\left[S_{2}, S_{3}\right] } & =2 \omega S_{1} \\
{\left[S_{3}, S_{1}\right] } & =2 \omega S_{2}
\end{aligned}
$$

so that $(2 \omega)^{-1}\left(S_{1}, S_{2}, S_{3}\right)$ have the same Poisson bracket relations as the components of a 3 -dimensional angular momentum.
c) Show that

$$
S_{0}^{2}=S_{1}^{2}+S_{2}^{2}+S_{3}^{2}
$$

2. Assume that the transformation equations between the two sets of coordinates (q, p) and (Q, P) are

$$
\begin{aligned}
& Q=\ln \left(\frac{\sin p}{q}\right) \\
& P=q \cot p
\end{aligned}
$$

a) Assuming that q, p are canonical variables, i.e. $[q, p]=1$, show directly from the above transformation equations that Q, P are canonical variables.
b) Show that

$$
p d q-P d Q=d(p q+q \cot p)
$$

c) Find the explicit generating function $F_{1}(q, Q)$ that generates this transformation between these two sets of canonical variables. Note the integral $\int \sin ^{-1} x d x=\sqrt{1-x^{2}}+x \sin ^{-1} x$
3. Consider a bound two-body system comprising a mass m in an orbit at a distance r from a mass M. The attractive central force binding the two-body system is

$$
\mathbf{F}=\frac{k}{r^{2}} \hat{\mathbf{r}}
$$

where k is negative. Use Poisson brackets to prove that the eccentricity vector $A=p \times L+\mu k \hat{r}$ is a conserved quantity.

4 (a) Consider the case of a single mass m where the Hamiltonian $H=\frac{1}{2} p^{2}$. Use the generating function $S(q, P, t)$ to solve the Hamilton-Jacobi equation with the canonical transformation $q=q(Q, P)$ and $p=p(Q, P)$ and determine the equations relating the (q, p) variables to the transformed coordinate and momentum (Q, P).
(b) If there is a perturbing Hamiltonian $\Delta H=\frac{1}{2} q^{2}$, then P will not be constant. Express the transformed Hamiltonian \mathcal{H} (using the transformation given above in terms of P, Q, and t). Solve for $Q(t)$ and $P(t)$ and show that the perturbed solution $q[Q(t), P(t)], p[Q(t), P(t)]$ is simple harmonic.

