P235 - PROBLEM SET 3

To be handed in by 1700 hr on Friday, 24 September 2010.

[1] An unusual pendulum is made by fixing a string to a horizontal cylinder of radius R,wrapping the string
several times around the cylinder, and then tying a mass m to the loose end. In equilibrium the mass hangs
a distance [y vertically below the edge of the cylinder. Find the potential energy if the pendulum has swung
to an angle ¢ from the vertical. Show that for small angles, it can be written in the Hooke’s Law form
U= %kng. Comment of the value of k.
[2] Consider the two-dimensional anisotropic oscillator with motion with w, = pw and w, = qw.

a) Prove that if the ratio of the frequencies is rational (that is, % =4 where p and ¢ are integers) then
the motion is periodic. What is the period?

b) Prove that if the same ratio is irrational, the motion never repeats itself.

[3] A simple pendulum consists of a mass m suspended from a fixed point by a weight-less, extensionless rod
of length [.

a) Obtain the equation of motion, and in the approximation sinf ~ 6, show that the natural frequency
is wg = ﬂ , where g is the gravitational field strength.

b) Discuss the motion in the event that the motion takes place in a viscous medium with retarding force

2m\/a9.

[4] Derive the expression for the State Space paths of the plane pendulum if the total energy is E > 2mgl.
Note that this is just the case of a particle moving in a periodic potential U(6) = mgl(1—cosf). Sketch the
State Space diagram for both F > 2mgl and F < 2mgl.

[5] Consider the motion of a driven linearly-damped harmonic oscillator after the transient solution has died
out, and suppose that it is being driven close to resonance, w = w,.

a) Show that the oscillator’s total energy is £ = %moﬂAz.

b) Show that the energy AEy; dissipated during one cycle by the damping force I'é: is 7['mw A?

[6] Two masses m; and ms slide freely on a horizontal frictionless surface and are connected by a spring
whose force constant is k. Find the frequency of oscillatory motion for this system.



P235 - PROBLEM SET 3

[1] An unusual pendulum is made by fixing a string to a horizontal cylinder of radius R,wrapping the string
several times around the cylinder, and then tying a mass m to the loose end. In equilibrium the mass hangs
a distance [y vertically below the edge of the cylinder. Find the potential energy if the pendulum has swung
to an a.ngle ¢ from the vertical. Show that for small angles, it can be written in the Hooke’s Law form
U= %kq& . Comment of the value of k.

The PE is U = —mgh where h is the height
of the mass, measured down from the level of
the cylinder’s center. To find h, note first that
as the pendulum swings from equilibrium to
angle ¢, a length R¢ of string unwinds from the
cylinder. Thus the length of string away from
the cylinder is AB = (I, + R¢), and the height
BD is BD = (l, + R¢) cos ¢. Since the height
CD = Rsin¢, we find by subtraction that h = BD — CD = l,cos ¢ + R(¢cos ¢ — sin ).
Therefore

U = —mgh = —mgll, cos ¢ + R(¢ cos ¢ — sin ¢)).

If ¢ remains small we can write cos¢ = 1 — ¢?/2 and sin ¢ = ¢, to give

U=~ -mg{lo— il.6* + R [¢(1 — 14*) — 8]} = —mgl, + mgle¢® = const + 1k¢?

where in the third expression I dropped the term in ¢3. The constant k = mgl,, which is
the same as for a simple pendulum of length l,. Evidently, wrapping the string around a
cylinder makes no difference for small oscillations.




[2] Consider the two-dimensional anisotropic oscillator with motion with w; = pw and w, = quw.

a) Prove that if the ratio of the frequencies is rational (that is, L2 — 5 where p and g are integers) then
‘ the motion is periodic. What is the period? ’

b) Prove that if the same ratio is irrational, the motion never repeats itself.

(a) Suppose that the ratio of frequencies is rational, that is wz/wy = p/q, where
p and q are integers. Then let 7 = 2mp/w, = 2mq/w,. Now consider the following

z(t + 1) = A coslw,(t +7]) = A, coslw,t + 2mp] = A, coslw,t] = z(t)

where in the second equality I used our definition of 7 and in the second the fact that if p
is an integer then cos(6 + 27p) = cos(6). This shows that z(t) is periodic with period . By
exactly the same argument, y(t) is also periodic with the same period 7, and we’ve proved
that the whole motion is likewise. What we usually call the period of the motion is the value
of 7 = 2mp/w, with p and g the smallest integers for which wz/wy = p/q.

(b) Suppose the motion is periodic. Then there is a T such that z(t + 1) = z(t) and
y(t + 7) = y(t). Running the previous argument backward, we see that w,7 must be an
integer multiple of 2w, that is w,7 = 2mp for some integer p. Similarly w,m = 2mq for
some integer ¢. Dividing these two conclusions, we see that w, /wy, = p/q and the ratio of
frequencies is rational. Therefore, if the ratio is irrational, the motion cannot be periodic.




_E“A sinﬁl:;le pendulum consists of a mass m suspended from a fixed point by a weight-less, extensionless rod
of length I.

. a) Obtain the equation of motion, and in the approximation sin 6 ~ 0, show that the natural frequency
iswp = \/%- , where g is the gravitational field strength.

\‘t;)_[D.iscuss the motion in the event that the motion takes place in a viscous medium with retarding force
2m./glé.

The equation of motion is

—-méB=mgsin 8 §))
9=—i§-sin9 @

If 8 is sufficiently small, we can approximate sin 8= 6, and (2) becomes

o g
=-%¢ ®)
0 £
which has the oscillatory solution
6(t) = 6, cos w,t 4)

where o, =,[g/¢ and where 6, is the amplitude. If there is the retarding force 2m JEZ 6, the
equation of motion becomes .

-mlf= mg sin 6+ Zm@ 6 (5)
or setting sin €= 6 and rewriting, we have
0+ 20,0+ w?0=0 (6)
Comparing this equation with the standard equation for damped motion [Eq. (3.35)],
¥+2pk+wix=0 )]
we identify @, = £ . This is just the case of critical damping, so the solution for &(¢) is [see
Eq. (3.43)]
» 6(t)=(A+Bt)e™ 8)
C For the initial conditions (0) =6, and &0) = 0, we find

. o(t) = 6, (1+ wyt)e™™



[4] Derive the expression for the State Space paths of the plane pen

dulum if the total energy is E > 2mgl.
Note that this is just the case o

f a particle moving in a periodic potential U(6) = mgl(1—cosf). Sketch the
State Space diagram for both E > 2mgl and E < 2mgl.

For the plane pendulum, the potential energy is

u=mgl[1-cos 6] 1)

If the total energy is larger than 2mg/, all values of @ are allowed, and the pendulum revolves

continuously in a circular path. The potential energy as a function of @ is shown in (a) below.
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Since T = E - U(#), we can write
T=2mv? =2 mPé? = E— mge(1 0
: = = E - mge(1-cos 6) 2)
and, therefore, the phase paths are constructed by plotting
P 12
0= ‘/W [E-mgt(1-cos 6)] 3)
versus 6. The phase diagram is shown in (b) below.
E=2mgf A6
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[5] Consider the motion of a driven linearly-darmped harmonic oscillator after the transient solution has died
out, and suppose that it is being driven close to resonance, w = wo.

a) Show that the oscillator’s total kinetic emergy is E = jmuw?4>. . N \

b) Show that the energy AEg;, dissipated cluring one cycle by the damping force 't is *['mwA

(a) Since z = Acos(wt — §), the total energy is
E = imi® + 1kz* = Imw? A’ cos2(wt — 8) + 1kA® sin®(wt — 6).
Because w = w,, we can replace k = mw? by m.«w?, and then, since cos®f + sin?0 = 1, we get
E = imw?A?, as claimed.

(b) The rate at which the damping force dissipates energy is Fampv = bv? = 2mpBy2.
Therefore the energy dissipated in one period is

AEy;, = / 2mpBvidt = 2m Guw? A / sin®(wt — &)dt.
0 0

The remaining integral is just 7 /w. (T o see this use the trig identity sin?0 = 3(1—sin 26) and
note that the integral of the sine termx. over a period is zero.) Therefore, AEy;; = 2rmBwA2.
(c) Combining the results of parts (a) and (b), we find that -
E  gmA W Q
AEg; 2rmpPwA?  AwB 2w

where I have again used the fact thatt w = w,. That is, the ratio of the total energy to the
energy lost per cycle is 27Q.




[6] Two masses m;y al.ld mg ‘slide freely on a horizontal frictionless surface and are connected by a spring
whose force constant is k. Find the frequency of oscillatory motion for this system.

—
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Suppose the coordinates of my and ms are x, and
x3 .and the length of the spring at equilibrium
{s t. Then the equations of motion for my and

my are
mix:s = -k(Xa-x248) (1)
Mmaxa = -k(xa-x1-2) (2)
fFrom (2)., we have
Xy * -:— (m:;x + kxa - kt) (3)
Substituting this expression into (1), we find
. . .
5%’ (Mmimixz + (Memz)kxa] = 0 (4)
from which
- My +M
e T ®

Therefore, x: oscillates with the frequency

My +Me

MaMa k (6)

We obtain the same result for xi. If we notice
that the reduced mass of the system is defined
as [see £q. (7.5)]

(7)

=l
3~
21~

we can rewrite (8) as

“"/5 (8)

This means the system oscillates in the same way
as a system consisting of a single mass y.
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