
P235 - PROBLEM SET 3
To be handed in by 1700 hr on Friday, 24 September 2010.

[1] An unusual pendulum is made by fixing a string to a horizontal cylinder of radius wrapping the string
several times around the cylinder, and then tying a mass  to the loose end. In equilibrium the mass hangs
a distance 0 vertically below the edge of the cylinder. Find the potential energy if the pendulum has swung
to an angle  from the vertical. Show that for small angles, it can be written in the Hooke’s Law form
 = 1

2
2. Comment of the value of 

[2] Consider the two-dimensional anisotropic oscillator with motion with  =  and  = .
a) Prove that if the ratio of the frequencies is rational (that is,  =


 where  and  are integers) then

the motion is periodic. What is the period?
b) Prove that if the same ratio is irrational, the motion never repeats itself.

[3] A simple pendulum consists of a mass  suspended from a fixed point by a weight-less, extensionless rod
of length .
a) Obtain the equation of motion, and in the approximation sin  ≈  show that the natural frequency

is 0 =
p


 , where  is the gravitational field strength.

b) Discuss the motion in the event that the motion takes place in a viscous medium with retarding force
2
√
̇.

[4] Derive the expression for the State Space paths of the plane pendulum if the total energy is   2.
Note that this is just the case of a particle moving in a periodic potential () = (1−cos) Sketch the
State Space diagram for both   2 and   2

[5] Consider the motion of a driven linearly-damped harmonic oscillator after the transient solution has died
out, and suppose that it is being driven close to resonance,  = .
a) Show that the oscillator’s total energy is  = 1

222.
b) Show that the energy ∆ dissipated during one cycle by the damping force Γ̇ is Γ2

[6] Two masses m1 and m2 slide freely on a horizontal frictionless surface and are connected by a spring
whose force constant is k. Find the frequency of oscillatory motion for this system.
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P235 -PROBLEM SET 3

[I] An unusual pendulum is made by fixing a string to a horizontal cylinder of radius R,wrapping the string
several times around the cylinder, and then tying a mass m to the loose end. In equilibrium the mass hangs
a distance lo vertically below the edge of the cylinder. Find the potential energy if the pendulum has swung
to an an~le ct> from the vertical. Show that for small angles, it can be written in the Hooke's Law form
U = ~kct> .Comment of the value of k.
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The PE is U = -mgh where h is the height
of the mass, measured down from the level of
the cylinder's center. To find h, note first that
as the pendulum swings from equilibrium to
angle C/>, a length R</> of string unwinds from the
cylinder. Thus the length of string away from
the cylinder is AB = (lo + R</», and the height
BD is BD = (lo + R</» COB c/>. Since the height
CD = Rsinc/>, we find by subtraction that h = BD -CD = locosc/> + R(c/>cos</> -sin</».

Therefore
U = -mgh = -mg[lo CDS ct> + R( ct> CDS ct> -sin ct»].

If ct> remains small we can write CDS ct> ~ 1 -ct>2/2 and sin ct> ~ ct>, to give

where in the third expression I dropped the term in 4>3. The constant k = mglo, which is
the same as for a simple pendulum of length lo. Evidently, wrapping the string around a
cylinder makes no difference for small oscillations.

.



.(a) Suppose that the ratio of frequencies is rational, that is UJ:z:/UJy = p/q, where
p and q are integers. Then let T = 211"p/UJ:z: = 211"q/UJy. Now consider the following

x(t + T) = A:z: COS[UJ:z:(t + TJ) = A:z: COS[UJ:z:t + 211"pJ = A:z: cos[UJ:z:t] = x(t)

where in the second equality I used our definition of T and in the second the fact that if p
is an integer then cos(8 + 211"p) = cos(8). This shows that x(t) is periodic with period T. By
exactly the same argument, y(t) is also periodic with the same period T! and we've proved
that the whole motion is likewise. What we usually call the period of the motion is the value
of T = 211"p/UJ:z: with p and q the smallest integers for which UJ:z:/UJy = p/q.

(b) Suppose the motion is periodic. Then there is a T such that x(:t + T) = x(t) and
y(t + r) = y(t). Running the previous argument backward, we see that UJ:z:T must be an
integer multiple of 211", that is UJ:z:"T = 211"p for some integer p. Similarly UJyT = 211"q for
some integer q. Dividing these two conclusions, we see that UJ:z:/UJy = p/q and the ratio of
frequencies is rational. Therefore, if the ratio is irrational, the motion cannot be periodic.



The equation of motion is

-mlB= mg sin B (1)

..gB= --sin B
f (2)

If e is sufficiently small, we can approximate sin {} = {}, and (2) becomes

..g0=--0
f. (3)

which has the oscillatory solution

8(t) = 80 COg mot (4)

where {j)o = Jilt and where eo is the amplitude. If there is the retarding force 2m.fii iJ, the

equation of motion becomes

-mt' jj = mg sin e + 2m~ iJ (5)

or setting sin 8 = 8 and rewriting, we have

...2()+ 2OJo(} + OJo(}= 0 (6)

(7)

Comparing this equation with the standard equation for damped motion [Eq. (3.35)],

x + 2pi. + O)~x = 0

we identify 0)0 = p. This is just the case of critical damping, so the solution for 0( t) is [see

Eq. (3.43)]

(8)fJ(t) = (A + Bt)e-DJol

For the initial conditions fJ(O) = fJo and ~O) = 0, we find

JfJ(t) = fJo (1 + Q)ot)e-~t I





[5] Consider the motion of a driven linearly-dar:nped harmonic oscillator after the transient solution has died
out, and suppose that it is being driven close to resonance, CAJ = CAJo.

a) Show that the oscillator's total kinetic e:nergy is E = !mcu2 A2.
b) Show that the energy ~EdiB dissipated during one cycle by the damping force rx is 7rrmcuA2

(a) Since x = Acos(wt -5), the total energy is

E -Imx2 + lkx2 = lmUJ2 A2 Cc:s2(UJt -5 ) + lkA2 sin2( cut -5 )-2 2 2 2 .

Because (AJ ~ (AJo, we can replace k = mtAJo2 by ~2, and then, since COS2() + sin2(} = 1, we get
E = lmUJ2 A2, as claimed.

(b) The rate at which the damping force dissipates energy is FdmpV = lIV2 = 2m/3v2.
Therefore the energy dissipated in one period is

f)..Edis = lT 2m/3v2dt = 2m,l3(AJ2 A21T sin2(UJt -cS)dt.

The remaining integral is just 7r /UJ. (T'o see this use the trig identity sin2() = ~(l-sin 2()) and
note that the integral of the sine ternL over a period is zero.) Therefore, AEdis = 27rm{3UJA2.

( c) Combining the results of parts (a) and (b), we find that

E lmUJ2A2 UJo Q
= 2=_=-

AEdis 27rm{3UJA2 47r{3 27r

where I have again used the fact that CJ) = CJ)o. That is, the ratio of the total energy to the

energy lost per cycle is 27rQ.
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[6] Two masses mt and m2 slide freely on a horizontal frictionless surface and are connected by a spring
whose force constant is k. Find the frequency of oscillatory motion for this system.

[~:t~~~j ~ X
)(1 Xa.

Suppose the coordtnates of ml and ml are XI and
XI and the lengt.n of the sprIng at eQuIlIbrIum
Is 1. Then the eQuatIons of motIon for ml and

ml are
mlXI .-k(xl-xl+l) (1)

m,AI .-k(XI-XI-t) (2)

From (2). ve have
1 -

XI .k (miXI + kxI -kt) (3)

SubstItutIng thIs expresston tnto (1). ve fInd
d' ..

"df:1 [mlmixi + (ml.m,)kxl] .0 (4)

from vhlch

-mt~1X. .--kxI (5)
mtml

Therefore. XI oscIllates wIth the frequency

,-w.~ -;- I
L:-/~~~

We obtain the same result for Xt- If we not1ce
that the reduced mass of the system Is defIned

as (see Eq. (7.5)]

(6)

1 1 1-.-+-\I m. m. (7)

ve can rewr1te (6) as

w .~ (6)
Th1s means the system osc111ates 1n the same way
as a system cons1,t1ng of a s1ngle mass ~.
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