P235 - PROBLEM SET 3

To be handed in by 1700 hr on Friday, 24 September 2010.
[1] An unusual pendulum is made by fixing a string to a horizontal cylinder of radius R, wrapping the string several times around the cylinder, and then tying a mass m to the loose end. In equilibrium the mass hangs a distance l_{0} vertically below the edge of the cylinder. Find the potential energy if the pendulum has swung to an angle ϕ from the vertical. Show that for small angles, it can be written in the Hooke's Law form $U=\frac{1}{2} k \phi^{2}$. Comment of the value of k.
[2] Consider the two-dimensional anisotropic oscillator with motion with $\omega_{x}=p \omega$ and $\omega_{y}=q \omega$.
a) Prove that if the ratio of the frequencies is rational (that is, $\frac{\omega_{x}}{\omega_{y}}=\frac{p}{q}$ where p and q are integers) then the motion is periodic. What is the period?
b) Prove that if the same ratio is irrational, the motion never repeats itself.
[3] A simple pendulum consists of a mass m suspended from a fixed point by a weight-less, extensionless rod of length l.
a) Obtain the equation of motion, and in the approximation $\sin \theta \approx \theta$, show that the natural frequency is $\omega_{0}=\sqrt{\frac{g}{l}}$, where g is the gravitational field strength.
b) Discuss the motion in the event that the motion takes place in a viscous medium with retarding force $2 m \sqrt{g l} \dot{\theta}$.
[4] Derive the expression for the State Space paths of the plane pendulum if the total energy is $E>2 m g l$. Note that this is just the case of a particle moving in a periodic potential $U(\theta)=m g l(1-\cos \theta)$. Sketch the State Space diagram for both $E>2 m g l$ and $E<2 m g l$.
[5] Consider the motion of a driven linearly-damped harmonic oscillator after the transient solution has died out, and suppose that it is being driven close to resonance, $\omega=\omega_{o}$.
a) Show that the oscillator's total energy is $E=\frac{1}{2} m \omega^{2} A^{2}$.
b) Show that the energy $\Delta E_{\text {dis }}$ dissipated during one cycle by the damping force $\Gamma \dot{x}$ is $\pi \Gamma m \omega A^{2}$
[6] Two masses m_{1} and m_{2} slide freely on a horizontal frictionless surface and are connected by a spring whose force constant is k . Find the frequency of oscillatory motion for this system.

