P235-PROBLEM SET 4

To be handed in by $\mathbf{1 7 0 0} \mathbf{~ h r}$ on Friday, 1 October 2010.
[1] Find and describe the path $y=y(x)$ for which the the integral $\int_{x_{1}}^{x_{2}} \sqrt{x} \sqrt{1+\left(y^{\prime}\right)^{2}} d x$ is stationary.
[2] Find the dimensions of the parallelepiped of maximum volume circumscribed by a sphere of radius R.
[3] Consider a single loop of the cycloid having a fixed value of a as shown in the figure. A car released from rest at any point P_{0} anywhere on the track between O and the lowest point P, that is, P_{0} has a parameter $0<\theta_{0}<\pi$.
a) Show that the time for the cart to slide from P_{0} to P is given by the integral

$$
\operatorname{time}\left(P_{0} \rightarrow P\right)=\sqrt{\frac{a}{g}} \int_{\theta_{0}}^{\pi} \sqrt{\frac{1-\cos \theta}{\cos \theta_{0}-\cos \theta}} d \theta
$$

b) Prove that this time is equal to $\pi \sqrt{a / g}$ which is independent of the position P_{0}.
c) Explain qualitatively how this surprising result can possibly be true.

[4] Consider a medium for which the refractive index $n=\frac{a}{r^{2}}$ where a is a constant and r is the distance from the origin. Use Fermat's Principle to find the path of a ray of light travelling in a plane containing the origin. Hint, use two-dimensional polar coordinates with $\phi=\phi(r)$. Show that the resulting path is a circle through the origin.
[5] Find the shortest path between the (x, y, z) points $(0,-1,0)$ and $(0,1,0)$ on the conical surface

$$
z=1-\sqrt{x^{2}+y^{2}}
$$

What is the length of this path? Note that this is the shortest mountain path around a volcano.
[6] Show that the geodesic on the surface of a right circular cylinder is a segment of a helix.

