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A multinucleon transfer reaction between a thin self-supporting78
198Pt target and an 850 MeV54

136Xe beam has
been used to populate and study the structure of theN=80 isotone 56

136Ba. Making use of time-correlatedg-ray
spectroscopy, evidence for anIp=s10+d isomeric state has been found with a measured half-life of 91±2 ns.
Prompt-delayed correlations have also enabled the tentative measurement of the near-yrast states which lie
above the isomer. Shell-model calculations suggest that the isomer has a structure which can be assigned
predominantly assnh11/2d10+

−2 . The results are discussed in terms of standard and pair-truncated shell-model
calculations, and compared to the even-Z N=80 isotones ranging from50

130Sn to 68
148Er. A qualitative explanation

of the observed dramatic decrease in theBsE2:10+→8+d value for theN=80 isotones at136Ba is given in
terms of the increasing single-hole energy of theh11/2 neutron configuration as the proton subshell is filled. The
angular momentum transfer to the binary fragments in the reaction has also been investigated in terms of the
average totalg-ray fold versus the scattering angle of the recoils.

DOI: 10.1103/PhysRevC.69.024316 PACS number(s): 21.10.Pc, 21.10.Tg, 27.60.1j

I. INTRODUCTION

Nuclei in the vicinity of the doubly closed-shell nucleus

50
132Sn82 [1] give information on the basic single-particle
structure and interactions between pairs of nucleons occupy-
ing the valence states. In particular, the evolution of structure
in the N=80 isotones can be used to identify the pertinent
role of the unnatural-parityh11/2 neutron orbital which has a
major influence on the makeup of the high-spin states in this
region. IsomericIp=10+ states have been reported in all the
even-A N=80 isotones from50

130Sn up to 68
148Er [2–7], with the

exception of theZ=56 isotone,136Ba. In the recent paper by
Geneveyet al. [3] the significant reduction of theBsE2d
between the yrast 10+ isomeric state and the first 8+ state in
the Zù58 N=80 isotones[4–7] compared to theirZø54
counterparts[2,3] has been discussed in terms of a signifi-
cant component of the neutronsnh11/2d−2 configuration in the
wave function of the 8+ state in the lighter systems.

The magnetic moment measurements of the yrastIp

=10+ isomers in 58
138Ce and 60

140Nd [5] are all consistent with
near-spherical, maximally aligned two-neutron-hole
snh11/2d−2 configurations. Similarly, two-neutron-hole 10+

states have also been observed in the lighter barium isotopes

56
132Ba [8] and 56

134Ba [9]. The differing structure of the 10+

isomeric state with the structure of the 8+ state seems the
reason for the sudden decrease in theBsE2:10+→8+d value
for Z.56.

In the present paper we report on the structure of the
stable nucleus56

136Ba80 studied using deep-inelastic reactions
and time-correlatedg-ray spectroscopy. This completes the
systematics of the even-Z N=80 isotones, with the observa-
tion of the “missing”s10+d isomer in this nucleus, which has
a tentativesnh11/2d10+

−2 configuration.
During the preparation of this manuscript, we became

aware of a parallel study of56
136Ba by Ganet al. [10], the

results of which are consistent with those presented in the
current work.

II. EXPERIMENTAL PROCEDURE

Prior to this study the medium-to-high-spin data on136Ba
were restricted due to theb-stable nature of136Ba, which
makes it difficult to populate with heavy-ion induced fusion-
evaporation reactions. TheN=80 isotone lies between the
lighter barium isotopes which can be readily populated using
this method[11] and heavier, neutron-rich isotopes which
have been studied as residues from spontaneous fission
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[12–14]. To date, the data on the near-yrast states in136Ba
come from work usingb decay[15], sn,gd reactions[16],
Coulomb excitation[17], and light-ions9Bed induced fusion
reactions[18]. As a result, prior to this work, the highest spin
state known was the yrast 8+ state identified by Dragulescuet
al. [18].

The current work utilized a thin-target heavy-ion binary
reaction to populate the medium-spin yrast states in136Ba.
The experiment reported in the current work was performed
at Lawrence Berkeley National Laboratory using an
850 MeV 54

136Xe beam provided by the 88 in. cyclotron inci-
dent on a self-supporting 420mg cm−2

78
198Pt target, isotopi-

cally enriched to.92%. The typical beam intensity was
<1 pnA and the cyclotron beam had a natural micropulsing
period of 178 ns. Reactiong rays were detected using the
GAMMASPHERE g-ray array [19], which in this experi-
ment consisted of 103 Compton-suppressed germanium de-
tectors, 70 of which are electrically segmented into two
D-shaped halves to improve the Doppler correction. The
heavy-metal collimators from the bismuth germanate(BGO)
suppression shields were removed thereby allowing a mea-
surement ofg-ray fold to be taken for each event(see later).
The Chico gas-filled parallel plate avalanche chamber
ancillary detector [20] was used in combination with
GAMMASPHERE to measure the angles(both polar and
azimuthal) and the time-of-flight differencesDTOFd between
the detection of both recoils, thus allowing an event-by-event
Doppler shift correction to be made for emittedg rays.

The experimental master trigger condition required two
Chico elements and at least three germanium detectors in
mutual coincidence. The hardware master-gate timing condi-
tion was set such that the third(and any subsequent) germa-
nium signals in that event could be delayed by up to 670 ns
with respect to the detection of the binary reaction fragments
and the first twog rays. Approximately 109 such events were
recorded on tape during the course of the four-day experi-
ment.

III. DATA REDUCTION AND OFF-LINE ANALYSIS

The beam-like and target-like fragments(BLFs and TLFs,
respectively) were detected using Chico in coincidence with
theg rays emitted by the reaction product nuclei. TheDTOF
measured between the detection of the two fragments, to-
gether with the angular information given directly by the
recoil detector, allowed the separation of the TLFs and BLFs
(as shown in Fig. 1). The most intense region for the frag-
ment distributions was observed at the grazing angle[21],
which for this particular reaction occurred at approximately
the same laboratory angle of 50° for both the TLFs and
BLFs. Note that in the current work, there was also an ex-
perimental detection cutoff foru,20° as a result of a mask
which was introduced to cut the high counting rate in Chico
at very forward angles. The reduction in counts in the par-
ticle identification spectrum at 60° occurs as a result of a
support rib in the pressure window of Chico and was used as
an internal calibration for the particle angular determination.

In the off-line analysis a software requirement was de-
fined to include only events where at least three promptg

rays occurred within ±15 ns of the binary fragments being
detected in Chico. This allowed a well-defined time refer-
ence for all delayedg rays decaying from isomeric states in
the binary fragments to be used in the subsequent analysis.
Figure 2(a) shows the sum of time distributions associated
with the individual GAMMASPHERE detectors and Fig.

FIG. 1. Particle identification plot for the current work. The
measurement of theDTOF and scattering angles of the recoilsu
allows the two binary partners to be cleanly separated.

FIG. 2. Upper spectrum(a) shows the total time projection of
g-ray events in the current work, note that the time between the
cyclotron bursts is 178 ns. Lower spectrum(b) shows the time dif-
ference between pairs ofg rays stg1

− tg2
d.
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2(b) shows the relative time differences betweeng rays mea-
sured in coincident events. By setting software gates on these
spectra, specific temporal regions could be defined, corre-
sponding to either promptg rays which were emitted from
the fragments in flight or those decays from isomeric states
in nuclei which were stopped in Chico.

The recoiling products stopped in Chico, which was
<13 cm from the target position, corresponding to fragment
times of flight of<4–15 ns. Due to the absence of hevimet
collimators on GAMMASPHERE these stopped binary
fragments were in the line of sight for the majority of
GAMMASPHERE detectors, and thus decays from isomeric
states with lifetimes ranging from nanoseconds to microsec-
onds were observed with an efficiency that was approxi-
mately equal to that forg rays emitted at the target position
[20].

The maximum velocities of the binary partners wereb
<11%, as determined from the two-body kinematics of the
reaction. Therefore, the promptg rays emitted in flight were
heavily Doppler shifted. However, it was possible to correct
the promptg-ray energies for the Doppler effect on an event-
by-event basis using the interaction position of the recoils as
measured by Chico. The interaction position determined the
velocities bBLF and bTLF of the recoiling beam and target
nuclei, respectively. By conservation of linear momentum
[20] and assuming the limiting case of no particle evapora-
tion,

PBLF,TLF =
P0sinsuTLF,BLFd
sinsuBLF + uTLFd

, s1d

where PBLF=ms136XedbBLFc and PTLF=ms198PtdbTLFc are the
momenta of the recoiling beam and target nuclei, respec-
tively; uBLF and uTLF are the laboratory scattering angles
of the recoiling beam and target nuclei, respectively, and
P0 is the momentum of the incident beam. Note that since
it is not possible to determine the mass of the recoils with
Chico, the momenta of the recoils are calculated assuming
the beam136Xe and target198Pt masses.

The Doppler-shiftedg rays were corrected according to
[22]

ES= E0

Î1 − b2

1 − b cosQ
, s2d

whereE0 is the energy in the rest frame of the nucleus andQ
is the emission angle relative to the trajectory of the nucleus
in the laboratory frame. The angleQ was determined using
the expression

cosQ = sin uRsin ugscosfR cosfg + sin fRsin fgd

+ cosuR cosug, s3d

where uR and fR are the scattering angles of the recoils
sBLFs and TLFsd, andug andfg are the detection angles of
the g rays from GAMMASPHERE.

The g-ray energies as measured in the laboratory frame
could thus be Doppler corrected for either BLFs or TLFs.
Note that in each case only theg rays emitted by the nuclei
for which the Doppler correction was made were enhanced

in the resulting spectrum, while those with the incorrect
Doppler correction were smeared out(see Fig. 3).

Figure 3(a) shows the promptg rays which were mea-
sured to be withinDt= ±45 ns of the master trigger, with no
Doppler correction applied. Figures 3(b) and 3(c) show the
same spectra Doppler corrected for BLFs and TLFs, respec-
tively. Note that the BLF Doppler corrected spectrum[Fig.
3(b)] shows the prompt 349 keV transition which feeds the
s10+d isomer in136Ba (see later), while in the TLF Doppler
corrected spectrum the 407 keV transitions2+→0+d in 198Pt
[23] can be identified. The low-lying prompt transitions from
the 136Xe beam nucleus[e.g.,Es2+→0+d=1313 keV] are not
obviously evident in Fig. 3(b) due to the presence of a low-
lying Ip=6+,t1/2=3 ms isomeric state in this nucleus[24],
which traps most of the prompt feeding.

Figures 3(d) and 3(e) show delayedg rays gated in two
different time regimes. Figure 3(d) shows g rays emitted
within the time range 200 ns–780 ns, while Fig. 3(e) shows
g rays within the first 200 ns of the detection of the binary
fragments in Chico. The latter shows transitions associated
with the low-lying states of136Ba [16] (see later), the 2+

→0+ in 198Pt s407 keVd, and the delayed neutron peaks at
596 keV and 691 keV coming from neutron excitations of
74Ge and72Ge, respectively. The two very intense peaks at
110 keV and 197 keV are due to theg decay of the5

2
+

state

FIG. 3. Upper spectrum(a) shows promptg rays without any
Doppler correction, spectra,(b) and(c) show the total projection of
prompt Doppler corrected spectra for BLFs and TLFs, respectively.
The lower two panels show delayed spectra for two different time
ranges. Spectrum(d) shows delayedg rays emitted within the time
range 200–780 ns, while spectrum(e) showsg rays emitted within
the first 200 ns following the detection of fragments in Chico. The
peaks marked with a “+” symbol areg rays emitted during the
deexcitation decay of thes10+d isomer in136Ba.
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in 19F, with a half-lifet1/2=89.3 ns[23], which is used in the
electrical segmentation process of the HPGe detectors.

The full analysis of these data required a number of dif-
ferent coincidence matrices and cubes to be sorted. These
were subsequently analyzed using theRADWARE and ANA

packages[25,26]. Those of relevance to the present work are
listed in Table I.

IV. EXPERIMENTAL RESULTS

A wide range of isomeric states with half-lives in the
nanosecond-to-microsecond range were populated in both
the xenon and platinum regions. Background subtracted
g-ray spectra and their measured half-lives for isomers popu-
lated in the beam-like and the target-like regions are shown

in Figs. 4 and 5, respectively. The half-lives have been fitted
with a constant background in addition to the exponential
decay curve. Table II summarizes these half-life measure-
ments. The consistency between the literature values
and those of the current work shows the reliability of this
analysis. Note that the isomers found in
131I , 133I , 184W,191Os,192Os, and198Pt have not been reported
in the literature prior to the current work.

The main focus of this paper is the identification of the
internal structure of56

136Ba which corresponds to the addition
of two protons and the removal of two neutrons from the

54
136Xe projectile. The level scheme deduced from the present
work for 136Ba is shown in Fig. 6 and was obtained by ex-
amining background subtracted spectra from(i) an out-of-
beam matrix, constructed from delayedg-g coincidences

TABLE I. Summary of the different matrices and cubes used in the analysis of the present work.

ID Description Time gatefDtsnsdg Additional conditions

x axis y axis z axis

I g-g delayed matrix 45→780 45→780

II g-g-time cube tg1
− tg2

=5 ns(see Fig. 2)

III gdelayed-gprompt-Dt cubea 45→780 ±45 gprompt gated on BLF

IV g-g prompt matrixb ±45 ±45 341, 363, 787, 819, 1048(keV)c

V gdelayed-gprompt 45→780 ±45 gprompt gated on BLF

VI gdelayed-uscatt-fold cubed 45→780

aDt is defined astdelayed− tprompt.
bDoppler corrected for BLF.
cDelayedg rays in 136Ba.
duscatt is the scattering angle of the BLF measured by Chico.

FIG. 4. Background subtractedg-ray spectra for selected isomeric states in BLFs populated by a136Xe beam at 850 MeV impinging on
a 198Pt target. The insets show the fitted half-life curves obtained in this work and the pairs of doubleg-ray gates used to obtain the half-life
curve are given in braces. The isomers identified in131I and 133I have not previously been reported.
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(see Table I) for the levels below thes10+d isomer; (ii ) an
in-beam prompt matrix, constructed fromg-g coincidences
gated on delayed transitions in136Ba and Doppler corrected
for the BLFs(see Table I) [this enabled the identification of

prompt transitions which feed thes10+d isomer]; (iii ) a
prompt-delayed matrix which corresponded to pairs ofg rays
in which the first one came as a prompt, in-flight decay,
while the delayed transition was measured between 45 and
780 ns later(see Table I).

FIG. 5. Background subtractedg-ray spectra for selected isomeric states in TLFs populated by a136Xe beam at 850 MeV impinging on
a 198Pt target. The insets show the fitted half-life curves obtained in this work and the pairs of doubleg-ray gates used to obtain the half-life
curve are given in braces. The isomers identified in184W,191Os,192Os, and198Pt have not previously been reported.

TABLE II. Measured half-lives of selected isomers observed in
the present work and a comparison with literature values. Previ-
ously unreported isomers have been identified in131I , 133I ,
184W,191Os,192Os,198Pt.

Isotope Ip Ex (keV) t1/2snsd
Current work Previous works

128Te 10+ 2791 337±59 370±30[36]
130Te s7−d 2146 186±11 115±8[27]
131I 2352 43±1
133I 2436 780±160

132Xe 7− 2214 86±3 90±10[28]
136Xe 6+ 1892 .1000 3000±300[24]
138Ba 6+ 2091 1250±250 800±100[29]
137La 19

2
− 1870 342±25 360±40[30]

184W 15− 3714 188±38a

185Re s 21
2

−d 2124 164±10 120±15[32]
191Os 2640 61±4
192Os 4115 190±96
195Os s 27

2
−d 2229 26±9 26±2[33]

192Pt s10−d 2172 235±47 250±30[34]
198Pt 3019 36±2
193Au 31

2
+ 2486 165±12 150±50[35]

aA detailed study of this isomer can be found in Ref.[31].

FIG. 6. Level scheme of136Ba deduced from the present work
with the 91±2 nsIp=s10+d isomer. The widths of the arrows are
proportional to the relativeg-ray intensities.
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A. Transitions below the „10+
… isomer in 136Ba

The observation of the 819 keVs2+→0+d transition in
136Ba in the delayed spectrum shown in Fig. 7 clearly dem-
onstrates the presence of an isomer in this nucleus. Figure 7
shows all the transitions up to the previously reported 8+

state, together with a transition at 363 keV, which we inter-
pret to be the direct decay from as10+d isomer. The excita-
tion energy of this isomer is established from theg-g coin-
cidence relationships to be 3357 keV.

Spins and parities have been established for the levels in
136Ba up to theIp=8+ state at 2994 keV[16,18]. The Ip

=8+ [18] state at 2994 keV which decays to theIp=6+ state
via a g ray of energy 787 keV is clearly observed in the
present work together with a previously unreported branch
which decays to theIp=7− isomeric state at 2031 keV[16]
via a 964 keV transition.

The multipolarity of the 363 keV transition could be
E1,E2, orM1, from intensity balancing across the 2994 keV
state. Assignments of 8± and 9− can be ruled out for the
3357 keV level on the basis of nonobservation of direct de-
cay branches to the 6+ state at 2207 keV and to the 7− iso-
meric state at 2031 keV. Spins of 11 and higher for the state
can be ruled out on the basis of the electron conversion as-

sociated with such high-multipole decays and the measured
intensity balance across the 2994 keV state. Of the remain-
ing spin/parity assignments 9+ and 10+, the s10+d is strongly
favored on the basis of both the systematics of the even-Z
N=80 isotones and the shell-model calculations(see later).

A half-life of t1/2=91±2 ns, see Fig. 8, was obtained for
the decay of thes10+d state by measuring the time difference
between prompt and delayed transitions feeding in and out of
the proposeds10+d state. Assuming an electric quadrupole
nature for the 363 keV transition, theBsE2:10+→8+d
for 136Ba is calculated to be 0.97±0.2e2 fm4

=0.0231±0.0005 W.u. Figure 9(a) shows the delayed transi-
tions below the isomer, gated on the prompt 144, 328, 349,
and 510 keV transitions in136Ba (see later). The energies and
intensities of the delayed transitions observed in136Ba are
given in Table III.

B. Transitions above the„10+
… isomer in 136Ba

Prompt transitions which form a cascade feeding into the
proposedIp=s10+d isomer were deduced using ag-g prompt

FIG. 7. Background subtracted delayedg-ray spectra from the
decay of the 10+ isomer in136Ba. The time condition is that theg
rays are observed in the time rangeDt=100–600 ns with respect to
the master trigger.

FIG. 8. Time differenceg-g spectrum obtained by gating above
and below the isomeric 10+ state to determine the half-life of the
10+ state in136Bas91±2 nsd.

FIG. 9. Upper spectrum(a) shows the background subtracted
delayedg-ray spectrum gated by prompt transitions above the pro-
posed 10+ isomer. Lower spectrum(b) shows the background sub-
tracted promptg-ray spectrum gated by delayed transitions placed
below the proposed 10+ isomer.
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matrix Doppler corrected for BLFs and single-gated by the
yrast delayedg rays observed below the isomer in136Ba (see
Table I). Figure 9(b) shows the prompt transition above the
isomer, gated on the delayed 341, 363, 787, 819, 1048, and
1235 keV transitions in136Ba. Figure 10 shows a selection of
coincidence spectra forg rays above the isomer. The ener-
gies and intensities of the prompt transitions observed above
the isomer are given in Table IV.

The promptg-g coincidence spectra for states above the
s10+d isomer show evidence for a cascade involving the 349,
510, 849, and 328 keV transitions which are mutually coin-
cident. The ordering of these transitions above the isomer is
based on the intensity measurements and the identification of
a side-feeding transition with an energy of 1164 keV which
is in prompt coincidence with the 349 and 510 keV transi-
tions and appears to bypass the higher-lying members of the

cascade. The crossover branch associated with the 144 and
1215 keVg rays appears to feed directly into the proposed
3706 keV level which is depopulated by the 349 keV transi-
tion. The ordering of the 144 keV and 1215 keV transitions
is established in the current work on the basis of measured
g-ray intensity.

The ordering of the structure built on top of thes10+d
isomeric state as presented in the current work is tentative.
Specifically, the intense transition at 130 keV is in mutual
coincidence with the cascade of 349, 510, 849, and 328 keV
(see Fig. 10), although it does not appear to be in coinci-
dence with the 1164 keV transition which is assumed to feed
into the proposed level at 4216 keV. This situation suggests
that the 130 keV transition lies above the 849 and 1215 keV
transitions, but the large, measuredg-ray intensity for the
130 keV line(see Table IV) presents a potential problem. If
it is placed above the proposed 5065 keV level, not all of the

TABLE III. Energies, assignments, and relative out-of-beam in-
tensities for transitions observed in56

136Ba. The uncertainties in the
transition energies are ±0.2 keV.

Eg (keV) Ei Ef I i
p I f

p Ig (delayed)

66.9 2207 2141 6+ 5− 70(4)

86.8 2141 2054 5− 4+ 33(7)

153.6 2207 2054 6+ 4+ 40(6)

176.9 2207 2031 6+ 7− 67(5)

273.9 2141 1867 5− 4+ 69(5)

340.8 2207 1867 6+ 4+ 242(10)

363.0 3357 2994 s10+d 8+ 566(20)

787.1 2994 2207 8+ 6+ 460(20)

818.6 819 0 2+ 0+ 551(20)

963.6 2994 2031 8+ 7− 112(11)

1048.0 1867 819 4+ 2+ 410(22)

1235.2 2054 819 4+ 2+ 126(12)

1312.0 15(3)

FIG. 10. Background subtracted promptg-ray spectra single-gated by the delayed 341, 363, 787, 819, 1048, and 1235 keV transitions
placed below thes10+d isomer in136Ba. The time condition is that the promptg rays are observed withinDt= ±45 ns of the master trigger.

TABLE IV. Energies, assignments, and relative in-beam inten-
sities for transitions observed in56

136Ba above thes10+d isomer. The
energy resolution for promptg rays is<1%.

Eg (keV) Ei Ef I i
p I f

p Ig (prompt)

130 598(24)

144 (3850) (3706) 332(15)

208 109(8)

249 110(6)

268 94(5)

328 (5393) (5065) 176(9)

349 (3706) (3357) s10+d 566(10)

374 94(5)

510 (4216) (3706) 372(10)

849 (5065) (4216) 166(8)

1164 (5380) (4216) 126(9)

1215 (5065) (3850) 121(9)
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decay flux can be accounted for in the present work and
other nonobserved decay branches for the decay flux must be
present. We note that the 130 keV transition is in coincidence
with the unplaced lines at 208, 249, 264, and 130 keV, which
may account for some of this missing intensity. While the
quality of the spectra used for the promptg-g coincidences
above thes10+d isomer can demonstrate a number of mutual
coincidences(see Fig. 10), they are not of sufficient statisti-
cal significance to preclude a different ordering of the lines
above thes10+d isomer. One alternative could be that the
130 keV line lies lower in the cascade, i.e., either directly
feeding into the isomeric state or into the proposed level at
5393 keV.

V. DISCUSSION

The nucleus 56
136Ba has six valence protons outside the

closed shellZ=50 and two-neutron holes with respect to the
closed shellN=82. It was pointed out in 1973 by Meyer-
Lévy and Lopac[37] that many of the low-lying properties
of theN=80 isotones might be explained by the simple cou-
pling of the two-neutron holes to a quadrupole vibrator core.
The authors of Ref.[37] also noted that the spectral pattern
of the N=80 isotones from 52

132Te up to 60
140Nd were rather

similar with the presence of a two-phonon quadrupole vibra-
tional triplet established for136Ba and its neighbor,138Ce.
This work ignored any effects from the proton particles and
allowed couplings of neutron-hole states from the
d3/2,s1/2,h11/2,d5/2, and g7/2 orbitals to a vibrational core.
While this approach gave a reasonable prediction for the en-
ergies of the low-lying negative-parity states and the first 2+

and 4+ levels, it predicted that the yrast 6+ and 8+ states lay
above the yrast 10+ level. This clearly pointed to the need to
include both proton and neutron degrees of freedom in the
calculations for such apparently simple, two-neutron-hole
systems.

A. Shell-model and pair-truncated shell-model calculations

In order to understand the structure of136Ba, a shell-
model approach such as the one described in Ref.[38] has
been carried out in the present work. To truncate the model
space, the proton single-particle orbitals involved in the cal-
culations are restricted to the three orbitals 0g7/2,1d5/2, and
0h11/2, which have initial single-particle energies of 0.0,
0.963, and 2.760 MeV, respectively. The neutron single-hole
orbitals include all of the five orbitals between theN=50 and
82 shell, i.e., the 1d3/2,0h11/2,2s1/2,1d5/2, and 0g7/2 which
have single-hole energies of 0.0, 0.242, 0.332, 1.655, and
2.434 MeV, respectively. Those single-hole energies are ex-
tracted from experiment.

The effective shell-model Hamiltonian is written as

H = Hn + Hp + Hnp, s4d

whereHn, Hp, andHnp represent the neutron-neutron inter-
action, the proton-proton interaction, and the neutron-proton
interaction, respectively. The interaction among like nucle-
onsHt st=n or pd consists of spherical single-particle ener-
gies, a monopole-pairing interaction, a quadrupole-pairing

sQPd interaction, a quadrupole-quadrupolesQQd interac-
tion, a sHPd hexadecapole-pairing, and asHHd
hexadecapole-hexadecapole interaction. The strengths of
these interactions are determined so as to reproduce the
corresponding experimental energies of the singly closed-
shell nuclei 56

138Ba82 and 50
130Sn80. A quadrupole-quadrupole

interaction is the only term inHnp, the strength of which is
adjusted to reproduce the excitation energy of the 10+ iso-
mer. A detailed description of these interactions can be
found in Ref.f38g. The determined strengths of the inter-
actions, in MeV, are G0n=0.145,G2n=0.016,kn

=0.035,G4n=0.700,k4n=1.600,G0p=0.180,G2p=0.010,kp

=0.055,G4p=0.600,k4p=0.300, andknp=−0.165. Thedefi-
nitions of the HP and HH interactions are extensions of
the QP and the QQ interactions from angular momentum
coupling two to four, but no radial dependence is as-
sumed. These hexadecapole interactions are necessary for
a better fit, since the number of valence protons and neu-
trons is small in136Ba and quadrupole collectivity is still
not dominant compared to other interactions. In the cen-
tral panel of Fig. 11 the results of the shell-model calcu-
lations are shown compared with the experimental decay
scheme for136Ba as deduced in the current work. The
comparison for the even-spin yrast sequence up to the
proposeds10+d isomer is rather impressive, with the cal-
culations reproducing the ordering of these levels.

To study the basic structure of the levels in136Ba and to
keep the basis to a reasonable truncation, the pair-truncated
shell-model(PTSM) approach, which is described in Ref.
[39], has also been used. This approach is very similar to the
interacting boson model in concept, but the bosons are now
replaced by correlated nucleon pairs to treat Pauli effects
explicitly. In addition to theS:J=0 pairs, the truncated va-
lence space only allows pair excitations of the following
type,D :J=2,G:J=4 andH. Note that the calculation is lim-
ited to a singleH pair that can only be formed by the cou-
pling of two h11/2 proton particles or neutron holes to angular

FIG. 11. Comparison of the experimental energy spectra(left
panel) with the results of the shell-model calculation(middle panel)
and the pair-truncated shell-model calculations(right panel) for
136Ba (see text for details). Note that in the middle and right panels
the states are separated into columns for the yrast states up to 10+,
the positive-parity states and the negative-parity states.
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momentumJ=0,2,4,6,8,10. Incontrast, the other pairs in
this model space are collective and can be made from linear
combinations of other angular momentum couplings between
pairs of nucleons in different single-particle orbitals. All
these pairs have positive parity so that only positive parity
states are predicted. In the right panel of Fig. 11 the results of
the PTSM are shown in comparison with the shell-model and
experimental results.

Figure 12 shows the expectation number of pairs for the
yrast positive-parity sequence in136Ba from the PTSM cal-
culations. From the upper two panels in Fig. 12, one can see
that the predicted wave functions of the positive-parity yrast
states up to spin 8+ are mostly dominated by protonD andG
pair couplings. On the contrary, as shown in the lowest panel
of Fig. 12, the yrast 10+ state is dominated by a neutronH
pair, corresponding to the maximally coupledsnh11/2d−2 con-
figuration. The dramatic alteration in the number and char-
acter of pairs between the 10+ isomeric state and the 8+ state
is responsible for the isomeric nature of the 10+ state and
also for the large reduction ofBsE2d transition rate(see be-
low). The shell-model calculations(see Fig. 11) predict that a
second 82

+ state lies just below the yrasts10+d isomer. This is
predominantly the nonmaximally coupledsnh11/2d8+

−2 configu-
ration. As shown in Table V the wave function of the second
82

+ state is dominated by anHn pair meanwhile the yrast 81
+

state is dominated byDp andGp pairs.
Using the resultant shell-model wave functions, we can

predict BsE2d values using effective charges with the con-

ventional relationen=−de andep=1+de as described in Ref.
[40]. Note that the effective charge for the neutron is nega-
tive since neutrons are treated as holes in this scheme. Thed
value is determined to give the experimentalBsE2:21

+

→01
+d value. The adopted effective charges areen=−0.82e

andep= +1.82e. The calculations predict a value for the de-
cay from this isomer ofBsE2:101

+→81
+d=0.04e2 fm4 com-

pared to the experimentally deduced result of 0.97s2de2 fm4.
Table VI lists the calculated and experimentalBsE2d values
for the yrast sequence in136Ba. Note that the theoretical stag-
gering of BsE2d values is caused by the alternation of the
number of protonD pairs andG pairs and the neutronH pair.

The shell-model calculations also predict the observed
low-lying negative-parity states with spin/parity 5− and 7−,
and intriguingly also predict an 8− state at a similar energy.
There is no evidence for the 8− negative-parity yrast trap in
the current data. Such a state might however be very long
lived, particularly if it lies below the well-knownt1/2
=0.3 sIp=7− isomer[23]. There is no evidence in the cur-
rent work for the population of the second 2+ state at
1551 keV corresponding to then=2 phonon vibration[23].

With regard to the comparison between the calculations
and the data for the states above thes10+d isomer, it is note-
worthy that the yrast states which are predicted to lie above
the isomer all have negative parity and thus must be com-
prised partly from anh11/2 component in their wave function.
Indeed the calculations do not predict a positive-parity state
of spin 11 or higher until<1.5 MeV above the isomeric
s10+d state. However, the calculations predict a 10− state
which lies a few hundred keV above thes10+d isomer and
both 11− and 12− states a few hundred keV above that.

B. Comparison with N=80 isotones

All the even-Z N=80 isotones(see Fig. 13) from 50
130Sn to

68
148Er exhibit 10+ isomeric states[2–7]. In 50

130Sn [2], 52
132Te

FIG. 12. The upper panel shows the expectation numbers of
neutronDn and Gn pairs, the middle panel shows the expectation
numbers of protonDp and Gp pairs calculated in the PTSM. The
lower panel shows the expectation numbers of neutron and proton
Hn,p pairs calculated in the PTSM. The expectation numbers are for
the positive yrast states.

TABLE V. The expectation numbers ofD, G, andH pairs cal-
culated in the PTSM for the yrast 81

+ state and the second 82
+ state.

Jp Dn Gn Hn Dp Gp Hp

81
+ 0.4577 0.0431 0.0938 1.0948 1.5163 0.0331

82
+ 0.0012 0.0068 0.9911 0.2213 0.0272 0.0043

TABLE VI. Comparison of the yrastBsE2d values in the shell
model (SM) with the measured values ine2 fm4. The experimental
data values have been taken from Refs.[41,42] and the present
work.

Ji
p→Jf

p SM Expt.

21
+→01

+ 802 801(6)

41
+→21

+ 1093

61
+→41

+ 251 38.6(9)

81
+→61

+ 932

s101
+d→81

+ 0.04 0.97(2)
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[3], 54
134Xe [3], 58

138Ce [4], and 60
140Nd [5] this 10+ isomer

has been associated with asnh11/2d10+
−2 configuration. In138Ce

and 140Nd [5] the magnetic dipole moment measurements
yielding values ofg=−0.176s10d andg=−0.192s12d, respec-
tively, suggest that the configurations for these two 10+ iso-
mers are consistent with thesnh11/2d10+

−2 configuration being
the major component. In62

142Sm and 64
144Gd [6], two 10+ states

have been observed with the lower-lying one being isomeric.
This has been interpreted[6] as competingsnh11/2d−2 and
sph11/2d2 configurations. In62

142Sm, the(lower-lying) isomeric
10+ state is mainly two-neutron holes in theh11/2 shell,
meanwhile for 64

144Gd the isomeric 10+ state is proposed to be
mainly a two-proton configuration. For the heavier isotones

66
146Dy [7,43] and 68

148Er [7,44], the 10+ isomeric states are both
thought to have predominantlysph11/2d10+

2 configurations,
since according to the systematics thesnh11/2d−2 states are
expected to be around 3.7 MeV and have not been reported
in these nuclei to date[7].

Figure 14(c) shows the systematics of theBsE2:10+

→8+d for the even-Z N=80 isotones from130Sn to 142Sm.
There is an obvious retardation in the decay from the iso-
meric 10+ state for136Ba, 138Ce [4], and142Sm [6] compared
to the lighter isotones. Lachet al. [6] suggest that such large
hindrances require a high configuration forbiddenness and
suggested a seniority four configuration for the yrast 8+ state
in 142Sm.

The sudden decrease in theBsE2:10+→8+d value at
136Ba as compared to the lighterN=80 isotones can be un-
derstood qualitatively in terms of the likely components of
the wave functions of the yrasts10+d and 8+ states. As dis-
cussed above, fromg-factor measurements and energy sys-
tematics, the nature of the yrast isomeric 10+ state is pre-
dominantly of snh11/2d−2 character in all the even-Z N=80
isotones between130Sn and 142Sm. For 130Sn, the closed-
shell nature of theZ=50 core gives rise to a “textbook”
two-hole single-j shell multiplet, implying that the yrast 8+

state has asnh11/2d−2 character. By a similar argument, the
valence two-proton system52

132Te can have only seniority two
couplings in theZ.50 valence space used. Neglecting exci-
tations into the protonh11/2 orbitals (which is reasonable
since these orbitals are at the top of the shell) the two valence
protons alone could only generate a maximum angular mo-
mentum of 6+ from spg7/2d2. Hence states of spin 8+ or more
must have seniority four, or incorporate the neutron pair with
J.0, since breaking theZ=50 core would be energetically

less favorable. ForZ.54, however, an angular momentum
of 8 and above can also be generated solely in the proton
space. The development of an increasing proton component
in the yrast 8+ state would then explain the observed de-
crease in theBsE2d from the predominantly two-neutron 10+

state.
The smoothly increasing excitation energy of the 10+ iso-

meric state[and by inference thesnh11/2d−2 configuration]
appears as a standard feature of theN=80 isotones from tin
to samarium. This can be understood from Fig. 14(a), which
shows the excitation energy of the lowest-lyingIp= 11

2
−

single-hole state in the odd-A N=81 isotones. The single-
hole excitation energy of theh11/2 neutron orbital is observed
to increase with proton number. This increase in single-hole
energy is responsible for an increase of more than 1 MeV in
the excitation energy of the yrast 10+ state between50

130Sn and
60

140Nd [see Fig. 14(b)]. This increased excitation energy
means that the seniority four configurations which include
the proton configurations can begin to compete energetically
with the seniority twosnh11/2d8+

−2 configuration in theN=80
isotones at the barium isotone and for heavier elements. This
results in a reduction of thesnh11/2d−2 component in the wave
function of the yrast 8+ states, which in turn gives rise to the
dramatic reduction inBsE2:10+→8+d value at136Ba.

VI. DETERMINATION OF ANGULAR MOMENTUM
TRANSFER VIA THE STUDY OF g-RAY FOLD

The knowledge of entry spin distributions and the related
angular momentum population in deep-inelastic reactions
has a significant bearing on the potential for using such
mechanisms in the study of high-spin states in neutron-rich
nuclei. While some effort was made in this area in the 1970s
(e.g., Ref.[45]), there have been only limited recent studies
which utilize the power of large-scaleg-ray arrays for chan-
nel selection in attacking this problem(e.g., Ref.[46]). In its
full complement GAMMASPHERE has a total of 110 HPGe
detectors all of which are Compton suppressed, i.e., each is
surrounded by a highZ, high density oxide BGO shielding.
This shielding improves the peak-to-total ratio by reducing
the Compton background, but at the same time it can also be
used to measure theg-ray fold for each event.

The total foldFtot measured in each event was the result
of adding the following contributions(see Fig. 15):

Ftot = FBGO+ FHPGe+ FCS, s5d

whereFBGO is the number of counts detected per event in all
the BGO shieldings,FHPGe is the number ofg rays, not

FIG. 13. Energy systematics
for theN=80 isotones(see text for
details).

J. J. VALIENTE-DOBÓNet al. PHYSICAL REVIEW C 69, 024316(2004)

024316-10



Compton suppressed, which were detected in all the germa-
nium detectors, andFCS are theg rays that have been Comp-
ton suppressed, i.e.,g rays that Compton scattered out of the
germanium and were detected in the HPGe detector in coin-
cidence with its BGO shielding.

Average fold versus recoil scattering angle

Using semiclassical expressions, given in Ref.[47], an
incident beam of136Xe at 850 MeV gives an initial angular
momentumLmax<300". From the semiclassical sticking and
rolling approximations[45,48,49] one can obtain an estimate
of the angular momentum input to the fragments in a given
binary reaction. In the sticking limit[45] the predicted angu-
lar momentum input to the fragments for the current work is
JBLF<30" andJTLF<60", while for the rolling mode limit,
JBLF<17" andJTLF<45". These numbers give an indication
of the spin states that might be expected to be populated in
this reaction and can be compared with the average folds
measured in the current work. To first order this should be
related to the average number ofg rays emitted by the sum
of the binary partners in a given event.

A gdelayed-uscatt-fold cube(see Table I) was used to obtain
the angular distribution of the average fold in the laboratory
frame. Figure 16 shows such distributions gated on delayed
g rays in 136Xe,136Ba,138Ba, and125Sb. Figure 16 has some
general features. One of the most prominent is the dip in

average fold around the grazing angles<50°d. Note that this
reduction in average fold is more prominent in the case of
the beam136Xe than for136Ba or 138Ba and it is essentially
nonexistent in the case of the125Sb. A second feature is the
roughly constant average fold over the angular rangesu
=65° –85°d, where the average fold is the highest. At more
forward anglessu=21° –39°d the statistics are lower, but the
average fold is roughly constant in the case of136Ba,138Ba,
and 125Sb, unlike in136Xe where the fold at forward angle
decreases due to the influence of the lower multiplicity Cou-
lomb scattering channel. The reason why the statistics are
lower at smaller angles is related to the low energy of the
recoils scattered at those angles, lowering the efficiency of
Chico in this angular range.

Theg-ray fold for an event gives a measure of the degree
of inelasticity of the binary interaction. The greater the over-
lap and degree of transfer between the two fragments, the
more angular momentum is transferred into the internal spins
of the fragments[45]. The transfer of angular momentum in
heavy-ion collisions such as those described in this paper can
be studied in terms of the average fold versus the measured
scattering angle of the recoils.

At the grazing angle the target and beam nuclei are ex-
pected to have a highly peripheral contact and thus quasielas-
tic events would be expected to dominate. Since such quasi-
elastic reactions are expected to have a relatively small
transfer of angular momentum from the initial angular mo-
mentum into internal spins[50] the average multiplicity is
expected to decrease in the vicinity of the grazing angle. This
regime could be explained with the rolling mode. The trans-
fer of angular momentum increases continuously with the
degree of inelasticity[48], when the nuclei touch each other
more solidly; if the contact time is long enough(i.e., deep-
inelastic collisions), the sticking limit ought to be reached.

FIG. 14. Upper panel(a) shows the energies of theIp= 11
2

−

single-hole states for theN=81 isotones, taken from Ref.[23]. Pan-
els (b) and(c) show the excitation energy of theIp=10+ isomer and
theBsE2:10+→8+d transitions rates for theN=80 isotones, respec-
tively, taken from Refs.[3,4,6].

FIG. 15. Total fold measured in the reaction(top), lower panels
show the different contributions. Note that the total foldsFtotd
shown in the upper panel is not the direct sum of the three lower
panels but the addition of the three contributions
sFBGO,FHPGe,FCSd event by event(see text).
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The typical deducedg-ray fold values of the order of 25
correspond to theaverage fold per event, however, it is
worth noting that the fold distribution extends up to consid-
erably higher values of 35 and greater, see Fig. 16. While
some of this apparent increase simply reflects the response
function of the GAMMASPHERE array, it is clear that sig-
nificantly higher folds are populated in this mechanism,
which bodes well for future high-spin studies using heavy-
ion binary collisions.

VII. SUMMARY AND CONCLUSIONS

In summary, evidence for anIp=s10+d isomer has been
reported for the first time in136Ba at an excitation energy of
3357 keV. It was produced in a binary reaction between a
136Xe beam at 850 MeV impinging on a thin198Pt target. The

assigned configuration is the two-neutron-holesnh11/2d10+
−2 ar-

rangement, in good agreement with the shell-model and pair-
truncated shell-model predictions and the systematics of the
N=80 isotones. The increase in excitation energy of the 10+

isomers and the decrease in theBsE2d values along theN
=80 isotones can be understood qualitatively in terms of the
single-particle excitation energy of theh11/2 neutron orbital.
The identification of thiss10+d isomeric state completes the
systematics for theN=80 isotones from theZ=50 closed-
shell 50

130Sn to past the proton midshell at68
148Er. Prompt de-

caying states above the isomer have also been identified. The
half-lives of a number of isomers populated in the reaction
have been reported for the first time in
131I , 133I , 184W,191Os,192Os, and198Pt.

The momentum transfer in this reaction has been investi-
gated in terms of the average fold versus the scattering angle
of the recoils. It is crucial to study the average fold distribu-

FIG. 16. Average fold distribu-
tion vs laboratory scattering recoil
angle u for the beam136Xe (top
left), 136Ba (top right), 136Ba (bot-
tom left), and 125Sb (bottom
right). In the spectra(a), (b), and
(c) fold cuts for various angular
ranges are shown. Note that the
grazing angle in the spectrum is
around 50°(see text for details).
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tion of neutron-rich nuclei that can be produced via deep-
inelastic processes, since spectrometers such as PRISMA
[51] can use this angular information to measure recoils with
the highest spin input.
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